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Abstract— The raw data for machine learning are often noisy,
redundant and high-dimensional, which largely increases the
complexity of the problem and difficulty in classification task.
Thus, dimensionality reduction plays an important role in data
mining and machine learning as a data pre-processing method.
In this paper, we evaluated the performance of some popular
dimensionality reduction algorithms on Animals with Attributes
(AwA2) data set[1], including variance feature selection, PCA,
kernel PCA, LDA, t-SNE, LLE, MDS and VAE. Furthermore,
we raised some conjectures from our results and conducted
further experiment to explain the reasons of our results.

I. INTRODUCTION

The raw data for machine learning are often noisy, re-
dundant and high-dimensional, which largely increases the
complexity of the problem and difficulty in classification
task. Thus, dimensionality reduction plays an important role
in data mining and machine learning as a data pre-processing
method, aiming at avoiding the curse of dimensionality and
reducing the complexity, as well as de-noising, compressing
or visualizing the data. In practice, a proper dimensional-
ity reduction can significantly enhance the performance of
machine learning algorithms.

With decades of development, there are many approaches
to reduce dimensionality and map the features into lower
dimensional space. The most naive method is feature se-
lection, which reduce the dimensionality by selecting some
”important” dimensions and discarding the rest. Feature
selection is equivalent to a search problem and can be
accelerated by greedy algorithm (e.g. forward or backward
feature selection), genetic algorithm and so on. The most
popular dimensionality reduction algorithms try to find lower
dimensional linear combinations of the original features
by learning a projection matrix W . The so-called feature
projection method includes a large variety of algorithms
such as PCA[2], kernel PCA[3], LDA[4], etc. Nowadays,
feature learning approaches grow rapidly and have taken
over the state-of-the-art of some areas like visualization.
They manage to retain the data distribution (SNE, t-SNE[5])
or manifold structure (LLE[6], MDS, IsoMap), or use deep
learning method (Auto-encoder, VAE[7]), which are suitable
under various conditions.

In this paper, we evaluated the performance of some pop-
ular dimensionality reduction algorithms on Animals with
Attributes (AwA2) data set[1], including variance feature
selection, PCA, kernel PCA, LDA, t-SNE, LLE, MDS and
VAE. We compared the SVM classification accuracy of the
reduced features and the visualization effects. The algorithms
are introduced in detail and experimented in section II and
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section III. Moreover, we raised some conjectures from
our results and conducted further experiment to explain the
reasons of our results in section IV.

II. METHOD
A. Feature Selection by Variance

Feature selection is the simplest approach for dimension-
ality reduction. It is accomplished by removing some certain
dimensions and keeping the rest.

One of the fastest and most popular methods of feature
selection is selecting by variance. It can be regarded as both
forward feature selection algorithm and backward algorithm.
And it can also be seen as a non-projected version of PCA.
Since the dimensions that have larger variance are more
likely to contain key information of the data, we can reduce
the dimensionality to k by selecting the k largest dimensions
by variance.

B. PCA

Principle component analysis is a well-known method
of linear feature projection, which was invented by Karl
Pearson[2].
The basic idea is to project data to a space of lower di-
mensionality, maximizing the variance along each projected
component to preserve more useful information. Formally,
the optimization goal is

max
v

vT XT Xv, s.t. vT v = 1, (1)

where v is the the new axis that X is projected to. To optimize
Equation 1, we introduce its Lagrangian form:

Lv = vT XT Xv−λ (vT v−1),
∂L
∂v

= XT Xv−λv = 0,

XT Xv = λv.

(2)

We can see that v is actually the eigenvector of XT X , and λ

is the corresponding eigenvalue. Moreover, if we substitute
λ back, we will find that

vT XT Xv = vT
λv = λvT v = λ . (3)

Therefore, if we want to project n-dimension data matrix X
to k-dimension data matrix X ′, we can first perform eigen-
value decomposition to the co-variance matrix XT X , then
choose the top k eigenvalues and corresponding eigenvectors
as v and perform the projection. In this way, we make sure
the variance is maximized along the k new axis.

In implementation, we perform singular decomposition to
X instead of performing eigenvalue decomposition to XT to
achieve better speed.
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In our experiment, we performed PCA algorithm provided
in scikit-learn on the data set.

C. Kernel PCA

Kernel PCA[3] is an extension of PCA, using kernel
methods, to perform PCA in a non-linear space.

It was inspired by the observation that when N points
can’t be linearly separated in d < N dimensions, it can
almost always separated in d > N dimensions. To exploit the
observation, we assume that there is a non-trivial function
Φ(x) that project point x to a higher-dimension space. Then
we replace X with Φ(X) in Equation 2.

Lv = vT
Φ(X)T

Φ(X)v−λ (vT v−1)
∂L
∂v

= Φ(X)T
Φ(X)v−λv = 0

Φ(X)T
Φ(X)v = λv

(4)

We can see that Φ(X) always appears in the form of
Φ(X)T Φ(X). Considering the cost of computing Φ(x) for
each data point and storing them, we can introduce K(x,y) =
Φ(x)T Φ(y), which is called kernel function, to simplify the
calculation.

In our experiment, we performed Kernel PCA algorithm
provided in scikit-learn on the data set, and compared perfor-
mance of polynomial, rbf, sigmoid and cosine kernels. The
expression of these four kernels is presented in Equation 5

KPoly(x,y) = (αxT y+b)d

KRBF(x,y) = exp(−‖x− y‖2

2σ2 )

KSigmoid(x,y) = tanh(αxT y+b)

KCosine(x,y) =
xT y
‖x‖‖y‖

(5)

D. LDA

Linear Discriminant Analysis[4] is a method used to find a
linear combination of features that characterizes or separates
two or more classes of objects. The idea of LDA can be
summarized in one sentence, that is, ”the intra-class variance
is the minimum after projection, and the inter-class variance
is the maximum”.

Let’s start with LDA for two classes. We define µ j as mean
vector of the jth sample while Σ j as co-variance matrix of
the jth sample.

Formally, our goal is:

argmax
ω

J(ω) =
ωT (µ0−µ1)(µ0−µ1)

T ω

ωT (Σ0 +Σ1)ω
(6)

We define matrix Sω for the distance between the category
centers of different categories of data, Sb for co-variance of
projection points of the same sample, so our goal will change
to:

argmax
ω

J(ω) =
ωT Sbω

ωT Sω ω
(7)

According to the property of generalized Rayleigh quo-
tient, we can determine the best projection direction ω .

If we need to deal with data with multi-class, the goal
should be:

argmax
W

J(W ) =
d

∏
i=1

ωT
i Sbωi

ωT
i Sω ωi

(8)

The maximum value is maximum eigenvalue of the matrix
S−1

ω Sb, the product of the largest d values is the product
of the largest d eigenvalues of the matrix S−1

ω Sb. In this
situation W is the matrix spanned by the eigenvectors of
the largest d eigenvalues. Because W is a projection matrix
using the category of the sample, the maximum value of d
that it reduces to is k−1.

In our experiment, we performed LDA algorithm provided
in scikit-learn on the data set.

E. t-SNE

The technique t-SNE[5] is a common method for visu-
alizing high-dimensional data by giving each data point a
location in a two or three-dimensional space, which is a
variation of Stochastic Neighbor Embedding[8]. It produces
significantly brilliant visualization by reducing the tendency
to crowd points together in the center of the map.

Stochastic Neighbor Embedding (SNE) evaluates the sim-
ilarity of data point x j to data point xi by

p j|i =
exp

(
−
∥∥xi− x j

∥∥2
)

∑k 6=i exp
(
−‖xi− xk‖2

) (9)

Similarly, in low-dimensional space, the similarity q j|i is
defined as

q j|i =
exp

(
−
∥∥yi− y j

∥∥2
)

∑k 6=i exp
(
−‖yi− yk‖2

) (10)

In t-SNE, however, Gaussian distribution is replaced by
t-distribution, so that the similarity of data point x j to data
point xi is defined as

q j|i =

(
1+

∥∥yi− y j
∥∥2
)−1

∑k 6=i

(
1+‖yk− yi‖2

)−1 (11)

The t-SNE has two main advantages over SNE. First,
the t-SNE gradient strongly repels dissimilar data points
that are modeled by a small pairwise distance in the low-
dimensional representation. Second, these repulsion does not
go to infinity. For these reasons, the t-SNE has considerable
performance on data visualization.

F. LLE

Locally Linear Embedding[6] (LLE) is a well-known
manifold learning algorithm. As the name has suggested,
LLE tries to keep the linear relation of the neighbors of each
sample when reducing the dimensionality.

To keep the local linearity, we can firstly learn the linear
relation W between each sample and its neighbors, which
can be formalized as:
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W = argmin
W

m

∑
i=1
‖xi− ∑

j∈KNN(xi)

wi jx j‖), (12)

where KNN(xi) is the k-nearest neighbors of sample xi
Then we can reconstruct the low-dimensional features

without changing the linear relation W :

Y = argmin
yi

m

∑
i=1
‖yi− ∑

j∈KNN(xi)

wi jy j‖). (13)

G. MDS

MDS(Multi-dimensional scaling) algorithm requires the
distance between samples in the original space to be main-
tained in the low-dimensional space.

Assuming that the distance between m samples is D in the
distance matrix of the original control, we aim to obtain the
sample matrix Z with the dimension reduced to d:

D ∈ Rm×m→ Z ∈ Rd×m (14)

The middle distance between the ith sample and the jth
sample in D is disti j, in Z is ‖Zi−Z j‖ then disti j = ‖Zi−Z j‖.
Next we define B = ZT Z then we will get:

dist2
i j = ‖zi− z j‖2 = ‖zi‖2 +‖z j‖2−2zT

i z j = bii +b j j−2bi j
(15)

For the convenience of discussion, let’s centralize the
sample matrix Z, that is:

m

∑
i=1

bi j =
m

∑
j=1

bi j = 0 (16)

Now we can get:
m

∑
i=1

dist2
i j =

m

∑
i=1
‖zi‖2 +‖z j‖2−2zT

i z j =
m

∑
i=1

bii +mb j j

m

∑
j=1

dist2
i j =

m

∑
i=1
‖zi‖2 +‖z j‖2−2zT

i z j =
m

∑
j=1

b j j +mbii

m

∑
i=1

m

∑
j=1

dist2
i j =

m

∑
i=1

m

∑
j=1
‖zi‖2 +‖z j‖2−2zT

i z j = 2m
m

∑
i=1

bii

(17)

Then we get:

dist2
i. =

1
m

m

∑
j=1

dist2
i j

dist2
. j =

1
m

m

∑
i=1

dist2
i j

dist2
.. =

1
m2

m

∑
i=1

m

∑
j=1

dist2
i j

(18)

According to these equation, we deduce that:

bi j =−
1
2
(dist2

i j−dist2
i.−dist2

. j +dist2
..) (19)

By eigenvalue decomposition of distance matrix B(B =
V ΛV T ), Z expression can be obtained:

Z = Λ
1
2∗V T
∗ (20)

H. VAE

Variational Auto-Encoder (VAE)[7] is a classical example
of Auto-Encoder Variational Bayes (AEVB) algorithm,
which uses a neural network for recognition model. The
algorithm allows us to perform very efficient approximate
posterior inference using simple ancestral sampling, which
in turn allows us to efficiently learn the model parameters,
without expensive iterative inference schemes per data point.

VAE uses a neural network for the probabilistic encoder
qφ (z|x) (the approximation to the posterior of the generative
model pθ (x,z)) and where the parameters φ and θ are
optimized jointly with the AEVB algorithm.

Let the prior over the latent variables be the centered
isotropic multivariate Gaussian pθ (z) = N (z;0,I). We let
pθ (x|z) be a multivariate Gaussian whose distribution pa-
rameters are computed from z with a MLP (a fully-connected
neural network with one hidden layer). In this case we can
let the variational approximate posterior be a multivariate
Gaussian with a diagonal co-variance structure:

logqφ (z|x(i)) = logN
(

z; µ
(i),σ2(i)I

)
(21)

where the mean and s.d. of the approximate posterior, µ(i)

and σ2(i), are outputs of the encoding MLP.
We sample from the posterior z(i,l) ∼ qφ (z|x(i)) us-

ing z(i,l) = gφ

(
x(i),ε(l)

)
= µ(i) + σ (i) � ε(l) where ε(l) ∼

N (0,I). With � we signify an element-wise product. The
resulting estimator for this model and data point x(i) is:

L
(

θ ,φ ;x(i)
)

' 1
2

J

∑
j=1

(
1+ log

((
σ
(i)
j

)2
)
−
(

µ
(i)
j

)2
−
(

σ
(i)
j

)2
)

+
1
L

L

∑
l=1

log pθ

(
x(i)|z(i,l)

)
where z(i,l) = µ

(i)+σ
(i)� ε

(l)

and ε
(l) ∼N (0,I)

(22)

III. EXPERIMENT

In this section, we used various popular dimensionality re-
duction methods described in section II. If not mentioned, the
algorithm is implemented with Python 3 and sklearn
package.

A. Data Set

We evaluated the chosen dimensionality reduction method
on Animals with Attributes (AwA2) data set[1]. This data set
consists pre-extracted 2048-dimension deep learning features
for 37322 images of 50 animal classes. We split the images
in each category into 60% for training and 40% for testing.

B. Baseline

We used linear SVM image classification based on the
deep learning features as baseline. To determine the hyper
parameters of SVM, we performed 5-fold cross-validation on
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Fig. 1. 2D Visualization of Variance Feature Selection

train set. The validation results is shown in Table I. We finally
chose one-vs-rest decision function and set C to 0.8 for the
following experiments. The baseline method’s accuracy on
test set is 93.05%.

C

Decision
function one vs one one vs rest

0.2 92.29 92.30%
0.4 92.36 92.46%
0.6 92.34 92.33%
0.8 92.51 92.53%
1.0 92.24 92.30%

TABLE I
CLASSIFICATION RESULT OF LINEAR SVM FOR VALIDATION

C. Feature Selection by Variance

We implemented variance feature selection directly with
Python Numpy and evaluated with SVM described in sub-
section III-B. The classification results and 2D visualization
are shown in Table II and Figure 1.

Dim. Acc.
Baseline 93.05%

2 9.82%
3 12.07%
10 46.64%
50 81.37%

100 87.07%
250 89.47%
500 91.53%
1000 92.55%
1500 92.88%
2000 93.06%

TABLE II
CLASSIFICATION ACCURACY OF VARIANCE FEATURE SELECTION

Overall, more dimensions results in higher accuracy. Since
the input data are pre-processed deep learning feature, they
have been reconstructed and may have more redundancies.
Thus the simple feature selection perform quite well on the
data: the 50 dimensions with largest variance achieve appre-
ciable accuracy of 81.37%. And reducing the dimensionality
to 2000 can even enhance the performance to 93.06%, which
outperforms our baseline model. This may be due to the noise
of the original data.

D. PCA and Kernel PCA
In this experiment, five different kernels was evaluated:

linear, polynomial, RBF (actually Gaussian in our experi-
ment), sigmoid, and cosine. Noticing the similarity between
kernels used in SVM and PCA, we also evaluated perfor-
mance of SVM using corresponding kernels on raw data as
supplementary baselines.

For PCA, we used full svd solver. For poly kernels, we set
its degree to 3, coefficient to 1/n f eatures and independent
term to 1. The shared parameters were the same for other
kernels.

The results are shown in Table III.

Dim.

Acc. K
Linear Poly RBF Sigmoid Cosine

Baseline 93.05% 91.03% 93.10% 92.87% -
2 25.61% 24.28% 19.94% 23.79% 28.34%
3 37.34% 34.48% 34.62% 34.72% 41.93%
10 77.90% 77.98% 75.99% 73.41% 78.94%
50 89.89% 91.65% 90.25% 88.77% 91.20%

100 90.31% 92.52% 91.51% 90.00% 92.19%
200 91.15% 92.99% 92.14% 90.52% 92.79%
500 92.24% 93.35% 92.58% 90.82% 93.16%
750 92.48% 93.38% 92.64% 90.90% 93.20%
1000 92.67% 93.48% 92.71% 90.89% 93.25%
1500 92.92% 93.52% 92.81% 90.91% 93.27%

TABLE III
CLASSIFICATION RESULT WITH PCA AND KERNEL PCA

We also visualized the data reduced to dimension 2 in
Figure 2 and Figure 3.

Fig. 2. PCA visualization

Generally, for linear PCA, the more dimensions preserved,
the more information is saved, and the higher is the accuracy.
We think it may be caused by different factors:

1) From the 2D visualization result, the data seems not
separable, which supports the poor performance with
2D reduced data for classification. Since we used linear
SVM for classification, the probable non-linearity was
never considered when using PCA for dimensionality
reduction.

2) PCA is based on the assumption that components
with bigger variance contain more information help-
ful to classification. The assumption may not work
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Fig. 3. Kernel PCA visualization

for extracted deep learning features. The components
with smaller variance could also be important. PCA
simply ignores them, which may result in acceptable
performance but will definitely fail to get better.

For PCA with kernel function, we also have some obser-
vations and analysis:

1) Polynomial kernel achieved best performance among
all. We thought it indicated the effectiveness of
considering the combinations of different features
for this classification task. However, we can see
that polynomial kernel didn’t work well on original
data, which might indicate that the combination
of different features can also bring redundancy
or enhance the noises, declining the performance.
Thus, dimensionality reduction can result in some
performance improvement.

2) Cosine kernel offered better accuracy than linear PCA.
To explain this, we can take a look at the expression
of cosine kernel, and find that it simply performs L2

(a) M = 2 (b) M = 100

(c) M = 500 (d) M = 1000
Fig. 4. Beta(1,M−1) with different Ms.

normalization to data points before computing inner
product. This observation indicates that normalization
can still play an important role in making the features’
information easier to be exploited.
Moreover, we can see that cosine kernel produced
significantly better performance for lower dimension-
ality comparing to others, which is also interesting.
Now suppose we are given two independent unit norm
random vectors u and v on M dimensional sphere
SM , and u,v are uniformly distributed on the sphere.
The inner product of u and v will follow distribution
Beta(1,M−1). Here, we illustrate its probability den-
sity function with different M in Figure 4. We can
see that the inner products become much more near
to each other as the dimensionality grows. Therefore,
the improvement of L2 normalization, or cosine kernel,
might be less significant for higher dimension situation.

3) RBF kernel, or Gaussian kernel in our experiment, pro-
vided slightly worse performance comparing to linear,
polynomial and cosine kernels. But for original data, it
achieved the best performance among all. The perfor-
mance gap, we think, was caused by the inappropriate
variance metric used in PCA. From the expression,
we can see that KGaussian(x,y) = exp(− ‖x−y‖2

2σ2 ) actually
represents the probability that x follows distribution
N (x,σ). Therefore, the computed ’co-variance ma-
trix’ actually has its probability meanings, and simply
selecting the dimension with biggest variance might
not be a good choice for this classification task. In
other words, the assumption that dimensions with
bigger variance contain more useful information could
fail for Gaussian kernels.

4) Sigmoid kernel is the only kernel that was defeated by
simple linear kernel in all the situations. For some pa-
rameters, its ’co-variance matrix’ is not semi-positive
definitive, the PCA algorithm might not be suitable for
its processing. For some other parameters, it behaves
like RBF kernel [9]. We think these might influenced
the relatively poor performance of sigmoid kernel.
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Furthermore, noticing that in subsection III-C, we used
similar strategy to select features. Comparing PCA and
feature selection results, we can easily see that PCA im-
proved classification accuracy significantly. Why did the
same maximizing-variance idea turn out to behave differ-
ently? We think the projection process is the key. PCA is an
orthogonal transformation, which means data are projected
to a space where axes are pairwise orthogonal. Without
PCA, simple feature selection ignores correlation between
the selected features and others. Therefore, when reducing
to the same dimensionality, PCA preserves more useful
information than simple feature selection by variance, which
results in the performance gap.

E. LDA

The experiment results of LDA are shown in Table IV. We
also visualized the data reduced to dimension 2 in Figure 5.

Dimension Accuracy
Baseline 93.05%

2 30.99%
3 41.36%

10 71.67%
49 91.60%

TABLE IV
CLASSIFICATION RESULT WITH LDA

Fig. 5. LDA 2D visualization

Notice that the LDA was only performed on dimensions
smaller than 50. The reason has been stated in subsection II-
D. Since the projection matrix W in the LDA algorithm is
obtained according to the type of the sample, the dimensional
d of the dimensional reduction is at most k− 1 (k is the
number of types of samples).

LDA is an algorithm supervised by classification labels.
Therefore, its reduction result is effective for classification
tasks. We can see its accuracy was the best of all the
algorithms when reducing data to 50 dimensions.

F. t-SNE

In our experiment, t-SNE used Barnes-Hut approximation
to calculate gradient on dimension 2 and 3, and calculated

exact gradient for other dimensions. Due to the computing
capacity limit, we did not get the reduction result on dimen-
sion higher than 500.
The result is shown in Table V. We also visualized the data
reduced to dimension 2 in Figure 6.

Dimension Accuracy
Baseline 93.05%

2(Barnes Hut) 86.58%
3(Barnes Hut) 87.82%

2 86.15%
3 86.83%

10 80.80%
50 90.21%
100 90.46%
200 91.36%
500 92.12%

TABLE V
CLASSIFICATION RESULT WITH T-SNE

Fig. 6. t-SNE 2D visualization

The t-SNE provided the best performance on less than
10 dimensions among all of our models. We consider its
extraordinary performance comes from its choice on how to
model relations between data points, which has been stated in
subsection II-E. The introduction of Gaussian distribution for
high dimension space preserves more useful information than
simple distance used in MDS, which is proved ineffective for
this task in subsection III-H. And the use of t distribution
for lower dimension space enables different data clusters to
be distant enough and the data points belonging to the same
cluster to be close, which benefits classification.

However, despite its brilliant performance, t-SNE cannot
be a good choice for dimension reduction. Because it has
no global optimum solution for a certain data distribution,
we can’t simply perform t-SNE separately on train set and
test set, since the algorithm might return totally different
data mappings, thus the classifier trained on train set can’t
work on test set. This is also the obstruction for MDS and
LLE. A possible solution is to train a regressor to regress
the low-dimension coordinate given the high-dimension data
point. However, considering the cost of resource and time,
it’s not quite a feasible way. Therefore, t-SNE is usually used
for data visualization instead of dimensionality reduction for
downstream tasks.
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G. LLE

Unfortunately, due to the limitations of computing re-
sources (memory), we only conducted LLE experiments on
2, 3 and 5 dimensions. We also tried different numbers of
nearest neighbors K. The results are shown in Table VI.

Not surprisingly, higher dimensionality brings higher ac-
curacy. And although the dimensionality is too low to have
an accurate performance, LLE can easily achieve higher
accuracy than simple feature selection methods and even
better than PCA at some choices of K.

Dim.

Acc. K
4 8 16

Baseline 93.05%
2 9.81% 41.10% 35.35%
3 28.11% 45.71% 42.13%
5 36.55% 54.22% 63.27%

TABLE VI
CLASSIFICATION RESULT WITH LLE

We also visualized the 2 dimensional features at different
K in Figure 7. The visualization results of LLE is much
worse than t-SNE since its performance highly depends
on the distribution and manifold structure of the raw data.
Besides, the best visualization figure is at K = 8, which is
consistent with the conclusion about accuracy above.

During the experiments of LLE, we found that normaliza-
tion after LLE reduction significantly improves the accuracy
of SVM classifier since the LLE output feature are usually
too small. The LLE results are on a scale of 10−4 to 10−6

in our experiments and without normalization, the SVM
classifier predicted all the data into one class. This may
due to the heterogeneity between dimensions, the limitation
of float precision or algorithm implementation of libsvm
itself.

The good performance of LLE is also surprising because
the input data are deep learning features and are supposed
to be randomly distributed in an area and do not have
manifold structure. A reasonable explanation is that in high
dimensional space, data are mainly distributed at the surface
of the area (proved at the class) and can be approximately
regarded as manifold.

H. MDS

Due to the same reason of memory limitation, MDS was
only implemented for dimensionality reduction of 2 dim. It
turned out to be ineffective and inaccurate on test set. The
results are shown in Table VII.

Dim.

Acc. Method
MDS

Baseline 93.05%
2 4%

TABLE VII
CLASSIFICATION RESULT WITH MDS

(a) K = 4

(b) K = 8

(c) K = 16
Fig. 7. LLE 2D Visualization at different K

Fig. 8. MDS 2D Visualization

We can see the poor performance of MDS for this task.
subsection III-C have shown that even simply selecting two
features can reach an accuracy of 9.82%, which is more
than twice of that of MDS.
The occurrence of these situations has a certain relationship
with the algorithms themselves. The reasons of the bad
performance are two-fold. It is mainly due to the low
dimensionality, since less key information is contained in
the feature. But what key information was lost? Considering
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that MDS’s core idea is to preserve distance information
during the transform, we can tell that the high-dimensional
distance information cannot be modeled well in low-
dimensional space through MDS. It can be illustrated
in Figure 9. In high-dimension space, there can be lots
of points that are pairwise equidistant while separable,
however, when transformed to lower-dimension space, their
separability may not be preserved. Figure 8 also supports
our inference, as we can see that the data points were totally
mixed up.

Fig. 9. The histograms of pairwise distances between n = 100 points
sampled uniformly in the hypercube [0,1]d

I. VAE

We implemented VAE with parameters, in which there
were xdim + ydim hidden layer neurons, where xdim and ydim
were the number of neurons in input layer and output layer,
and learning rate was set to 0.0001.

The visualization of 2-dimensional reduction result is
shown in Figure 10, and all results are shown in Table VIII.

Dimension Accuracy Accuracy (Reconstruction)
Baseline 93.05%

2 65.09% 62.78%
3 72.95% 70.15%

10 85.28% 75.20%
50 87.97% 74.22%
100 87.36% 73.25%
200 85.79% 69.80%
500 84.27% 61.13%
750 83.23% 46.96%

1000 75.34% 40.59%
1500 75.30% 39.80%
2000 78.16% 33.98%

TABLE VIII
CLASSIFICATION RESULT WITH VAE

Fig. 10. VAE 2D visualization

From the result of VAE reduction and reconstruction,
we come to a conclusion that, for this data set, dimension

around 50 performed better than any other dimensions in our
experiment. And generally, the reconstruction results were
worse than reduction results, which we think the random
sample procedure might be the reason. It could be caused
by the distribution of the data set. We supposed the data
set was composed of 50 Gaussian distributions, and we
did some further study on this issue in subsection IV-C.
Another observation from the result is that the accuracy after
reconstruction is much lower than that before. It could be
caused by that fact that in the decoder part of VAE neuron
network, more information of distribution is lost.

J. Comprehensive Comparison

We illustrate the performance of all methods used in
Figure 11.

Fig. 11. Performance curve of all the methods used except MDS and LLE

Generally, three types of dimensionality reduction method
were all proved effective by the experiments.

The projection and selection methods had similar perfor-
mance growth as the dimensionality grew, but most of these
methods began to work until reducing the data to about 500
dimensions. Besides the algorithms own insufficiency, the
crowding problem occurring in low-dimension situation is
also an important reason. The crowding problem is intro-
duced by Hinton et al. in [5]. For example, it is possible
to have 11 data points that are mutually equidistant in a
ten-dimensional manifold but it is not possible to model this
faithfully in a two-dimensional map. This problem results the
inefficiency of classifying data projected to low-dimension
space. LDA solved the problem by introducing the supervi-
sion of classification labels, trying to maximize inter-class
variance, and achieved great performance in relatively low
dimensionality. The feature learning methods, which were
quite noteworthy, provided different solutions. LLE, trying to
preserve the original manifold structure, achieved a feasible
result. MDS tried to preserve distance information in the
dimension transforming procedure. However, it failed in this
task because the distance information itself could lose a lot
during dimensionality reduction. t-SNE, aiming at preserving
the probability relationship during the transform procedure,
achieved to alleviate the problem with t distribution intro-
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duced. And VAE, exploiting the neural network structure,
presented competitive result from a generative perspective.

If taking efficiency into account, the projection and se-
lection methods were all efficient with CPU, while most
feature learning methods suffered from low efficiency with
only CPU support. VAE, accelerated by GPU, is an exception
among feature learning methods.

In a word, feature selection and feature projection provided
both efficiency and effectiveness, but they also needed to
keep more dimensions, where LDA was an exception. Most
feature learning methods could provide good results with
lower dimensionality if the data was suitable, but also
needed more time. And some of them are not suitable for
classification because the transform needs to be based on the
whole data set. VAE, which benefits from neural network
structure, could achieve both efficiency and effectiveness
with low dimensionality.

IV. FURTHER STUDY

In subsection III-H and subsection III-I, we were inspired
to some ideas relative to these methods. Trying to evaluate
them, here we presents some further study on these ideas.

A. MDS with Normalization

We’ve seen the poor performance of MDS in subsec-
tion III-H. Since it suffered from the loss of distance informa-
tion, will the normalization before dimensionality reduction
help? The inspiration was that normalization might make the
distance distribution in high-dimension space smoother, thus
it can be modeled better in low-dimension space.

Since MDS used Euclidean distance in our experiment,
we performed L2 normalization before performing MDS on
our data. The result were shown in Table IX.

Dimension Accuracy Accuracy (Normalization)
Baseline 93.05%

100 4% 19.39%

TABLE IX
CLASSIFICATION RESULT WITH MDS BEFORE AND AFTER

NORMALIZATION

Obviously, the performance of MDS has been improved
with normalization. Normalization can make the distance
distribution smoother in high-dimension space, so that the
distance information can be retained more effectively after
dimensionality reduction, though it’s still not worthy, espe-
cially considering the time and resource it costs.

B. Comparison Between Manifold Learning Algorithms

Since high dimensional data are more likely to distribute
on a low dimensional manifold, manifold learning algorithms
can be suitable on many circumstances rather than only on
some specific situation like Swiss roll. Because of the limi-
tation of computation resources, we can not implement these
algorithms on the AwA2 data set. Without loss of generality,
we evaluated some popular manifold methods with generated
Swiss roll like data, including LLE, MDS(Nave MDS),

IsoMap and t-SNE. The 3D samples and its dimensionality
reduction results are shown in Figure 12

(a) Dataset

(b) LLE (c) Naive MDS

(d) IsoMap (e) t-SNE
Fig. 12. 3D samples and its dimensionality reduction results

These algorithms have their own characteristics. Naive
MDS is not actually a manifold learning method so it didn’t
learn the manifold structure of the Swiss roll. But it managed
to retain the cluters of the data by keeping the relative dis-
tance of the samples. LLE and IsoMap successfully exploit
the manifold of the data set and stretch the Swiss roll into
a 2D plane. But they are slightly different in their results
because LLE only considers the local structure information
while IsoMap calculates the global pair-wise distance. Thus
the visualization of IsoMap is better than LLE. t-SNE try
to keep the probabilistic distribution of the data, so it only
partly keeps the manifold structure.

C. VAE

Originally in this model, we did not implement exper-
iments on dimension from 20 to 90 except 50. We saw
the VAE model reached the best performance when the
dimension increased to 50, and then the performance became
worse, except the final 2000 dimension. We assumed that
the original data is composed of 50 different Gaussian
distributions, because there were 50 different classes. Also,
as the data set was 2048-dimensional, the 2000-dimensional
performance got a bit better than lower dimensions. In this
case, we made an assumption that the VAE model reached
the best performance when the dimension is the original
dimension or the number of clusters. We implemented more
experiments between dimension 10 to 100 to confirm our
assumption. The result is shown in Table X. The result did
not conform to the assumption. However, we could see that
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the accuracy with reduced data and reconstructed data did
not converge to the same point, which might result from the
over-fitting or under-fitting of our model. It could be also
caused by other factors. The research on this phenomenon
could be interesting.

Dimension Accuracy Accuracy (Reconstruction)
Baseline 93.05%

10 85.28% 75.20%
20 88.93% 72.60%
30 88.53% 74.17%
40 88.28% 74.12%
50 87.97% 74.22%
60 87.67% 74.26%
70 87.72% 74.60%
80 87.28% 74.18%
90 86.99% 73.62%
100 87.36% 73.25%

TABLE X
CLASSIFICATION RESULT WITH VAE WHEN REDUCING DATA TO 10 TO

100 DIMENSIONS

V. CONCLUSIONS

In this project, we evaluated different dimensionality
reduction methods on the given data and analyzed their
performance. Finally, we try to give our own observation on
how to choose dimensionality reduction methods considering
different situations. For general purpose, we think PCA and
Kernel PCA is feasible, while VAE is also competitive and
efficient. For classification tasks, LDA might be a better
choice. For data visualization, LLE, MDS and t-SNE might
have their own advantages considering the data’s manifold
structure, while t-SNE might be more general. And for
generative purpose, VAE is the only choice.
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