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Abstract—This document is the report for Dimensionality
Reduction, the first project of Principles of Data Science. In
this project, we use feature selection (Genetic algorithm, Vari-
anceThreshold, ANOVA F-value, L1-based feature selection, Tree-
based feature selection, Random forest), feature projection (PCA,
LDA, Factor analysis) and feature learning (t-SNE, Auto-encoder,
VAE) to do the dimensionality reduction and record the result
separately. We will compare these results and find the optimal
dimensionality reduction method and the optimal dimensionality.

Index Terms—dimensionality reduction, feature selection, fea-
ture projection, feature learning

I. FEATURE SELECTION

Feature Selection is the process where you automatically or
manually select those features which contribute most to your
prediction variable or output in which you are interested in.
Feature selection techniques are used for four reasons:

1) Simplification of models to make them easier to interpret
by researchers/users.

2) Shorter training times.
3) Avoid the curse of dimensionality.
4) Enhanced generalization by reducing overfitting.
Subset selection algorithms can be broken up into Wrappers,

Filters and Embedded.

A. Wrapper Methods

Wrapper methods consider the selection of a set of features
as a search problem, where different combinations are pre-
pared, evaluated and compared to other combinations. We use
a predictive model to evaluate a combination of features and
assign a score based on model accuracy.

Here we use Genetic algorithm to select features.
1) Genetic Algorithm: Genetic algorithm (GA) is a meta-

heuristic inspired by the process of natural selection that
belongs to the larger class of Evolutionary algorithm. Genetic
algorithms are commonly used to generate high-quality solu-
tions to optimization and search problems by relying on bio-
inspired operators such as mutation, crossover and selection.
[1]

The evolution usually starts from a population of randomly
generated individuals, and is an iterative process, with the
population in each iteration called a generation. In each
generation, the fitness of every individual in the population is
evaluated. The more fit individuals are stochastically selected
from the current population, and each individual’s genome is

modified (recombined and possibly randomly mutated) to form
a new generation. The new generation of candidate solutions
is then used in the next iteration of the algorithm. Commonly,
the algorithm terminates when either a maximum number of
generations has been produced, or a satisfactory fitness level
has been reached for the population. The flow chart is shown
below.

Fig. 1. Genetic algorithm

B. Filter Methods
Filter feature selection methods apply a statistical measure

to assign a scoring to each feature. The features are ranked
by the score and either selected to be kept or removed from
the dataset. The methods are often univariate and consider the
feature independently, or with regard to the dependent variable.

Here we use two methods. One is VarianceThreshold, the
other is to consider ANOVA (analysis of variance) F-value.

1) VarianceThreshold: VarianceThreshold is a basic
method in feature selection. It removes all features whose
variance does not meet the threshold. If a feature has low
variance, it means that this feature has so few information
that we could remove it.

2) ANOVA F-value: Analysis of variance (ANOVA) can
determine whether the means of three or more groups are
different. ANOVA uses F-tests to statistically test the equality
of means. [2] The F value is simply a ratio of two variances.

F =
V ariationBetweenGroups

V ariationWithinGroups
(1)



Here we use ANOVA to make feature selection. We assume
that the mean between different groups of the same feature is
same. So how much probability do I accept this assumption?

Now we computeth F value based on data. If the variance
between groups is same as the variance within groups, then F
value is 1. If the variance between groups is much larger than
the variance within groups, this F value will be larger.

Here we give the relationship between F value and P value.

It can be seen that each F value corresponds to a p value.
The larger the F value, the smaller the p value. So it is less
likely that I accept my hypothesis.

Therefore, the larger the F value, the more this feature
should be preserved.

C. Embedded

Embedded methods learn which features best contribute
to the accuracy of the model while the model is being
created. The most common type of embedded feature selection
methods are regularization methods.

Here we use L1-based feature selection and tree-based
feature selection.

1) L1-based feature selection: Linear models penalized
with the L1 norm have sparse solutions: many of their es-
timated coefficients are zero. We could use SVM with L1
norm to train a classifier. Then we could select the non-zero
coefficients and remove the other coefficients.

2) Tree-based feature selection: Tree-based estimators can
be used to compute feature importances, which in turn can be
used to discard irrelevant features.

3) Random forest: Random forest is conducted by con-
structing a multitude of decision trees at training time and
outputting the class that is the mode of the classed or mean
prediction of the individual trees. [3]

II. FEATURE PROJECTION

Feature projection transforms the data in the high-
dimensional space to a space of fewer dimensions. The
data transformation may be linear, as in principal component
analysis (PCA), but many nonlinear dimensionality reduction
techniques also exist. [4] Here we use PCA and LDA to do
feature projection.

A. PCA

Principal components analysis (PCA) is a good way to in-
terpret the data into a lower-dimensional and more meaningful
norm in a linear process. The function of PCA can be shown
as Figure 2.

Fig. 2. An illustration for PCA.

We also give the implementation of PCA algorithm (X is
the data matrix with size n × p, where n is the number of
samples and p is the feature dimension):

1) Normalize the X .

x = x− 1

n

n∑
i=1

xi (2)

2) Calculate the covariance matrix C.

C =
1

n− 1
XTX (3)

3) Compute the eigenvectors and eigenvalues of C by
diagonalization.

C = V DV T (4)

where D is the diagonal matrix with eigenvalues λi and
λi is sorted in a decreasing order.

4) Select the first k columns of V as W so that∑k
i=1 λi∑n
i=1 λi

≥ Threshold (5)

5) Transform data into a lower-dimension space.

X ′ =WTX (6)

B. LDA

Linear Discriminant Analysis (LDA) is most commonly used
as dimensionality reduction technique in the pre-processing
step. LDA is ”supervised” and computes the directions (”linear
discriminants”) that will represent the axes that that maximize
the separation between multiple classes. The goal of LDA is
to maximize the distance in-between-class and minimize the
distance within-class. [5] The function of LDA can be shown
as Figure 3.

Fig. 3. An illustration for LDA.

We also give the implementation of LDA algorithm (reduce
the dimensions of a d-dimensional dataset by projecting it onto
a k-dimensional subspace ):



1) Compute the d-dimensional mean vectors for the differ-
ent classes from the dataset.

2) Compute the scatter matrices (in-between-class and
within-class scatter matrix).

3) Compute the eigenvectors (e1, e2, · · · , ed) and corre-
sponding eigenvalues (λ1, λ2, · · · , λi) for the scatter
matrices.

4) Sort the eigenvectors by decreasing eigenvalues and
choose k eigenvectors with the largest eigenvalues to
form a d×k dimensional matrix W (where every column
represents an eigenvector).

5) Use this d × k eigenvector matrix to transform the
samples onto the new subspace. This can be summarized
by the matrix multiplication: Y = X ×W (where X is
a n× d-dimensional matrix representing the n samples,
and y are the transformed n×k-dimensional samples in
the new subspace).

C. Factor analysis

Factor analysis is a theory that the information gained
about the interdependencies between observed variables can
be used later to reduce the set of variables in a dataset. It
helps to deal with datasets where there are large numbers of
observed variables that are thought to reflect a smaller number
of underlying/latent variables. [6]

Suppose we have a set of p observable random variables,
x1, · · · , xp with means µ1, · · · , µp. Suppose for some un-
known constants lij and k unobserved random variables Fj

(called common factors). We have

xi − µi = li1F1 + · · ·+ likFk + εi (7)

where i ∈ 1, · · · , p, j ∈ 1, · · · , k and k < p. Here, the εi are
unobserved stochastic error terms with zero mean and finite
variance.

Fig. 4. Factor analysis

III. FEATURE LEARNING

Feature learning is a set of techniques that allows a sys-
tem to automatically discover the representations needed for
feature detection or classification from raw data.

A. t-SNE

T-distributed Stochastic Neighbor Embedding (t-SNE) is a
nonlinear dimensionality reduction technique well-suited for
embedding high-dimensional data for visualization in a low-
dimensional space of two or three dimensions. [7] The t-SNE
algorithm comprises two main stages. First, t-SNE constructs a
probability distribution over pairs of high-dimensional objects
in such a way that similar objects have a high probability of
being picked while dissimilar points have an extremely small
probability of being picked. Second, t-SNE defines a similar
probability distribution over the points in the low-dimensional
map, and it minimizes the Kullback-Leibler divergence be-
tween the two distributions with respect to the locations of
the points in the map.

Given a set of N high-dimensional objects x1, · · · ,xN , t-
SNE first computes probabilities pij that are proportional to
the similarity of objects xi and xj , as follows:

pj|i =
(1 + ||xi − xj ||2)−1∑
k 6=i (1 + ||xi − xk||2)−1

(8)

Then t-SNE aims to learn a d-dimensional map y1, · · · ,yN
(with yi ∈ Rd) that reflects the similarities pij as well as
possible. It measures similarities qj|i between two points in
the map yi and yj , using a very similar approach.

qj|i =
(1 + ||yi − yj ||2)−1∑
k 6=i (1 + ||yi − yk||2)−1

(9)

The locations of the points yi in the map are determined by
minimizing the Kullback-Leibler divergence of the distribution
Q from the distribution P , that is:

L =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

p(j|i) log
pj|i

qj|i
(10)

Note that t-SNE is heavy-tailed compared to SNE with
Gaussian distribution.

Fig. 5. t-SNE and SNE with Gaussian distribution.

B. Auto-Encoder

An autoencoder is a type of artificial neural network used
to learn efficient data codings in an unsupervised manner. The
aim of an autoencoder is to learn a representation for a set of
data by training the network to ignore signal noise. [8] Along
with the reduction side, a reconstructing side is learnt, where
the autoencoder tries to generate from the reduced encoding
a representation as close as possible to its original input.



a) Structure: We can define the encoder as transition φ
and the decoder as ψ, such that:

φ : X→ F

ψ : F→ X

φ, ψ = argmaxφ,ψ ||X − (ψ ◦ φ)X||2

The simplest form of an autoencoder is a feedforward neural
network very similar to the many layer perceptrons (MLP), but
with the output layer having the same number of nodes as the
inputs layer. That is,

F =MLPθ1(X)

X = σ(MLPθ2(F))

Where σ is the activation function such as sigmoid function
or rectified linear unit.

We want to train a model that minimizes reconstruction
error. Since the feature space F has lower dimensionality than
the input space X, then the feature vector φ(x) can be regarded
as a compressed representation of the input x, which is shown
in Fig.6

Fig. 6. The structure of Auto-Encoder

b) With Noise: In order to obtain a more robust low-
dimensional representation, we add some noise to the model
and train the decoder to learn how to remove the noise to
reconstruct the input. By doing so, the model can be prevented
from overfitting the training data, so that the representation
obtained by the encoder has better performance on the test
set.

Here, we add noise to the hidden layer. That is,

φ : X→ F
ψ : F+ δ → X

Where δ is a noise that δ ∼ N (0, 1). This definition contains
the following implicit assumptions: the higher level represen-
tations are relatively stable and robust to the noise.

C. Variational Auto-Encoder (VAE)

Variational Auto-Encoder models inherit the Auto-Encoder
architecture, but make strong assumptions concerning the
distribution of latent variables. It assumes that the data is
generated by a directed graphical model p(x|z) and that the
encoder is learning an approximation qφ(z|x) to the posterior
distribution pψ(x|z) where φ and ψ denote the parameters
of the encoder (recongnition model) and decoder (generative
model) respectively [?]. [9] The loss function has the following
form:

L(φ, ψ, x) = DKL(qφ(z|x)||pψ(z))− Eqφ(z|x)(log pψ(x|z))

Commonly, the distribution is chosen such that they are
factorized Gaussians:

qφ(z|x) = N (ρ(x), ω2(x)I)

pψ(x|z) = N (µ(z), σ2(z)I)

Where ρ(x) and ω2(x) are the encoder outputs, while µ(z)
and σ2(z) are the decoder outputs. The structure is shown as
Fig.7.

Fig. 7. The structure of VAE

IV. EXPERIMENTS AND RESULTS

In this section, we will introduce something about the
experiment procedure and the results of different methods will
be displayed and compared.

A. Data processing

1) Download Animals with Attributes (AwA2) dataset from
https : //cvml.ist.ac.at/AwA2/, which consists of
37322 images of 50 animal classes with pre-extracted
deep learning features for each image.

2) Split the features and labels into 60% for training and
40% for testing.

B. Results of feature selection

1) SVM: We do not reduce the dimensionality of deep
learning features and use linear SVM to train a classifier.
We try different parameters C. When C = 0.001, we get the
highest Accuracy = 0.93304.



2) Genetic algorithm: In terms of feature selection, we
can apply the genetic algorithm here. Fortunately, Distributed
Evolutionary Algorithms in Python(DEAP) has provided us
with an advanced toolkit. To calculate Feature subset fitness,
we utilize logistic Regression and cross validation. As for
some hyper-parameters, we set population to 20, generation
to 4, considering limited time and computation resources.
Commonly, we just apply genetic algorithm to the whole set,
however, this way costs too much time.

To be adapted to it, we split features to small groups of
100 features, do feature selection independently and combine
the result together. Secondly, we iterate the method above 2
times, and we select 3 subsets of features. The feature subset
size and test accuracy is listed in the table below.

After 3 iterations, we get 3 feature subset of different sizes.

TABLE I
DIFFERENT FEATURE SUBSET SIZE TO REDUCE THE DIMENSION

Feature subset size Accuracy

445 0.9119
728 0.9207
1185 0.9317

3) VarianceThreshold: We filter the features according to
their variance. We try different thresholds to do the dimen-
sionality reduction.

TABLE II
DIFFERENT THRESHOLD TO REDUCE THE DIMENSION.

Threshold Dimension Accuracy

0.1 1879 0.9325
0.3 1021 0.9313
0.5 624 0.9289
0.7 400 0.9236
1.0 230 0.9142

We could see that VarianceThreshold reduce the dimension
with the cost of a little decrease of accuracy.

4) ANOVA F-value: We filter the features according to their
F value. We try different dimensions to do the dimensionality
reduction.

TABLE III
DIFFERENT REDUCED DIMENSION FOR ANOVA F-VALUE

Dimension Accuracy

1024 0.93304
512 0.9245
256 0.9159
128 0.8965

We could see that the effect of ANOVA F-value is similar
to variance. It reduces the dimension with the cost of a
little decrease of accuracy. But it exists something interesting
that when reduced dimension is 1024, its accuracy does not
decrease. It shows that there exists some redundant features
in the data.

5) L1-based feature selection: We use SVM with L1 norm
to select the features. We could change C to change the
dimension reduced.

TABLE IV
DIFFERENT REDUCED DIMENSION FOR L1 NORM

Dimension Accuracy

1867 0.9324
971 0.9316
321 0.9225
67 0.8649

We could see that the effect of L1 norm is satisfied and
similar to variance and F value.

6) Tree-based feature selection: We use tree-based model
to select the important features. After selection, the remain
dimension and accuracy is shown below.

TABLE V
TREE-BASED FEATURE SELECTION

Dimension Accuracy

584 0.9276

The tree-based model also get a satisfied result.
7) Random forest: Since the computation cost is accept-

able, we test the result with different hyper-parameters.
Different n estimators( feature subset = 200,

max depth = 10):

TABLE VI
DIFFERENT N ESTIMATORS TO REDUCE DIMENSION

n estimators Accuracy

1 0.8964
2 0.9009
3 0.9027
4 0.9047
8 0.9042
12 0.9038
16 0.9046

Different feature subset size( n estimator = 200,
max depth = 10):

TABLE VII
DIFFERENT FEATURE SUBSET SIZE TO REDUCE DIMENSION

n estimators Accuracy

8 0.3931
16 0.5624
32 0.7099
64 0.8297

128 0.8968
256 0.9114
512 0.9213



Fig. 8. test set accuracy – feature subset size

TABLE VIII
THE RESULT OF PCA

Reserved Variance Dimension Accuracy

0.95 848 0.9253
0.9 467 0.9255
0.8 189 0.9196

C. Results of feature projection

1) PCA: We use LDA to reduce the dimension. Here we
try different reserved variances.

Here we could see that the data with a lower reserved
variance and fewer dimensions has a higher accuracy. That
is amazing. In my opinion, the first example may have some
redundant or even interfering information.

2) LDA: We use LDA model to map the data into a low-
dimension space and we show the result below.

Fig. 9. The result of LDA.

We could see that the data mapped by LDA could have a
satisfied accuracy with a low dimension.

3) Factor analysis: The observations are assumed to be
caused by a linear transformation of lower dimensional latent
factors and added Gaussian noise. Without loss of generality
the factors are distributed according to a Gaussian with zero
mean and unit covariance. The noise is also zero mean and
has an arbitrary diagonal covariance matrix.

We change hyper-parameters n components and here fol-
lows a table and a line-plot graph below.

TABLE IX
THE RESULT OF FACTOR ANALYSIS

n components Accuracy

8 0.4645
16 0.6709
32 0.7976
64 0.8601

128 0.8929
256 0.9087
512 0.9203

Fig. 10. test set accuracy – n components

D. Results of feature learning

1) t-SNE: We change the parameter n components be-
tween 2 and 3 to reduce the dimension and test the accuracy.
The result is shown in the following table.

TABLE X
THE RESULT OF T-SNE

n components Accuracy

2 0.9017
3 0.9042

The results of 2 and 3 components do not have large
difference. It can been seen that both results of t-SNE are
not so satisfying. I guess that many related information has
been lost during the reduction to 2 or 3 components. Since
the process of t-SNE is more likely in order to be visualized,
the result is understandable.

2) Auto-Encoder: We want to know the effect of the
dimension of the feature data. So we first compress the raw
data to different dimensions through Auto-Encoder, then the
Linear SVM is used to classify the dimension-reduced data
and we record the best results on test set. The parameters we
used in our experiment is shown in Tab.XII.

The accuracy based on different dimensionality is show in
Fig.6. From the graph we can conclude that as the dimension
increases, the accuracy increases at the beginning stage and
the tendency will stop when reach a certain threashold.



TABLE XI
THE PARAMETER IN AUTO-ENCODER

Parameter Value

batch size 200
learning rate 0.001
train epoch 10
hidden dim [32,64,128,256,512,1024]

5 6 7 8 9 10
log(hidden_dim)

20

40
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80
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cu
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No noise
With noise

Fig. 11. The best accuracy on different dimensionality of Auto-Encoder

At the same time, it can be seen that adding noise to the
model can get better classification accuracy on the test set. This
means we can let the model learn to de-noise while learning
to reconstruct the input, so that we can get a more robust
intermediate representation. The lower target dimensionality
is, the greater the benefit of adding noise is.

However, using SVM to classify the vectors after dimension
reduction through Auto-Encoder, the result is inferior to the
baseline which is without dimension reduction. We attribute
this to the fact that dimensionality reduction will lose some
of the original information, but simplifies the complexity and
computation of the model, which is a trade off.

3) VAE: In order to compare the dimension reduction
effects of VAE and Auto-Encoder, we choose the same hyper-
parameters as autoencoder in this experiments. However, as
the loss function of VAE contains more terms, the convergence
rate will slow down. We increase the training epoch to 50. The
result of VAE is shown in Fig.12.

4 5 6 7 8 9
log(hidden_dim)
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Fig. 12. The best accuracy on different dimensionality of VAE

The accuracy of VAE is much higher than that of autoen-
coder, especially when the target dimension is low. When the
dimension is reduced to 32, the accuracy of VAE can exceed
92 on the test set, but the representation obtained by Auto-
Encoder cannot be classified by SVM. This means that VAE
can get low-dimensional representations with better quality.
We consider that the constraint of KL divergence is very
effective for dimensionality reduction.

Also, we can see that the results of VAE can benefit from
the increase of dimensions. When the hidden dim is 512, the
result obtained by VAE can exceed the performance of the raw
data which is without dimension reduction.

V. DISCUSSIONS

We list the highest accuracy of different methods and their
corresponding reserved dimension.

TABLE XII
THE HIGHEST ACCURACY OF DIFFERENT METHODS AND THEIR

CORRESPONDING RESERVED DIMENSION

Methods Accuracy Dimensions

GA 0.9317 1185
VarianceThreshold 0.9325 1879

ANOVA 0.9330 1024
L1 0.9324 1867

Tree 0.9276 584
Random forest 0.9213 512

PCA 0.9255 467
LDA 0.9242 48
FA 0.9203 512

t-SNE 0.9042 3
Auto-encoder 0.9213 512

VAE 0.931 512

It can be seen that the optimal method of dimensionality
reduction in our experiment is ANOVA and its corresponding
optimal dimensionality is 1024.

It can be concluded that the accuracy will be higher with the
increasement of dimensionality. Feature selection can maintain
a high accuracy with high reserved dimensions. However,
when the dimensionality is below 200, since it is not involved
in the procedure of advanced data processing, feature selection
will not remain endurable. Feature projection can still keep a
good performance around the dimensionality of 100. Mean-
while, feature learning is remarkable under some extremely
low dimensions. For example, the accuracy of VAE can still
exceed 92 even when the dimension is reduced to 32.

Therefore, if exceedingly low dimension is not required,
we can choose methods of feature selection, which are in low
computing complexity. If it is required, methods of feature
projection and feature learning will be better choices.

ACKNOWLEDGMENT

This experiment is successfully conducted thanks to the
effort of teammates and the guidance from Li Niu.



REFERENCES

[1] Mitchell, Melanie. An Introduction to Genetic Algorithms. Cambridge,
MA: MIT Press. ISBN 9780585030944, p. 2. 1996

[2] Belle, Gerald van. Statistical rules of thumb (2nd ed.). Hoboken, N.J:
Wiley. ISBN 978-0-470-14448-0. 2008

[3] Ho, Tin Kam (1995). Random Decision Forests. Proceedings of the
3rd International Conference on Document Analysis and Recognition,
Montreal, QC, pp. 278282. 1416 August 1995.

[4] Hotelling, H. Analysis of a complex of statistical variables into prin-
cipal components. Journal of Educational Psychology, 24, 417441, and
498520. 1993

[5] McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recog-
nition. Wiley Interscience. ISBN 978-0-471-69115-0. 2004

[6] Jolliffe I.T. Principal Component Analysis, Series: Springer Series in
Statistics, 2nd ed., XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4.
Springer, NY, 2002

[7] van der Maaten, L.J.P.; Hinton, G.E. ”Visualizing Data Using t-SNE”.
Journal of Machine Learning Research. 9: 25792605. Nov 2008

[8] Liou, Cheng-Yuan; Cheng, Wei-Chen; Liou, Jiun-Wei; Liou, Daw-Ran.
”Autoencoder for words”. Neurocomputing. 139: 8496. 2014

[9] Liou, Cheng-Yuan; Huang, Jau-Chi; Yang, Wen-Chie. ”Modeling word
perception using the Elman network”. Neurocomputing. 71 (1618):
3150. 2008


