
Project 1 Report: Dimensionality Reduction
Mingquan Feng

517030910373

Mingjie Li

517030910344

Shangning Xu

517030910384

Abstract—The rise of deep learning means that feature ex-
traction is no longer manual labor, but depending on network
design, deep learning approaches tend to extract a large number
of features, calling for effective dimensionality reduction methods.
Based on preextracted deep learning features from the AWA2
dataset, we survey current dimensionality reduction methods,
including feature selection by variance, PCA, kernel PCA, LDA,
FA, t-SNE, LLE, MDS and AE, and evaluate them on SVM
classifiers equipped with different kernels. Our experiment shows
that t-SNE with LDA preprocessing gives the best performance,
achieving 95.40% accuracy with only two dimensions. We also
analyse each method’s performance in terms of its approach to
dimensionality reduction.

Index Terms—dimensionality reduction, AwA2, PCA, kernel
PCA, LDA, FA, t-SNE, LLE, MDS, AE

I. INTRODUCTION

There are 3 main approaches to reduce dimensionality. The
most naive approach is feature selection, which reduce the di-
mensions by selecting subsets of features according some cri-
teria. Greedy methods like forward search or backward search
repitively add new qualifying features or discard disqualified
ones. The popular dimensionality reduction algorithms like
PCA [1], kernel PCA [2], LDA [3], FA [4] etc. try to find
lower dimensional linear combinations of the original features
by learning a projection matrix W . These methods belong
to another paradigm called feature projection. Nowadays, the
third approach to dimensionality reduction, namely feature
learning, is growing rapidly and have taken over the state-
of-the-art of some areas like visualization. They manage to
retain some characteristics of the training data, such as the
data distribution (SNE, t-SNE [5]), manifold structure (LLE
[6], MDS [7], IsoMap), or use deep learning method (Auto-
encoder).

In this project report, we evaluated the performance of
some popular dimensionality reduction algorithms on Animals
with Attributes (AwA2) dataset [8], including variance feature
selection, PCA, kernel PCA, FA, LDA, t-SNE, LLE, MDS and
AE. The report is organized as follows: In Section II, we give
a comprehensive review of methods evaluated in this report.
Section III presents our evaluation of these methods and we
analyse each method in terms of its approach to dimension-
ality reduction and compare the results with visualization in
Section IV.

II. METHOD

A. Feature Selection

Feature selection is the most basic method for dimension-
ality reduction and its result remains easy to interpret, due to

its intuitiveness. There are several types of feature selection
methods, notably the wrapper method, where we repetitively
select a subset of features and evaluate, until some stopping
criteria are met, and the filtering method, where a score is
computed for each feature and we filter out features that fail
to met some threshold.

There are two approaches to the wrapper method, namely
forward search and backward search. In forward search, we
start with an empty set and greedily add features to our
set, while in backward search we start with all features and
greedily remove features. We experiment with and evaluate
the selection-by-variance method, where the variance for each
feature is computed and the top k features with largest variance
are selected. It can be considered both as forward search and
backward search.

B. Principal Component Analysis

Principal component analysis (PCA) was invented in 1901
by Karl Pearson [1]. Intuitively, PCA can be thought of as
only keeping the most informative directions of data space,
and therefore the unit vectors of these directions are named as
principal components. The amount of information is measured
by data variance after projection to principal component. This
intuition leads to the object function as below:

max
v

vTXXTv

s.t. vTv = 1

where v is principal component, X is matrix of data,
vTXXTv =

∑n
i=1

(
vTxi

)2
is proportional to projection

variance. Using Lagrange multiplier to solve the optimization
problem gives:

Lv = vTXXTv + λ
(
1− vTv

)
∂Lv

∂v
= XXTv − λv = 0

XXTv = λv

vTXXTv = vTλv = λ

Therefore, the principal components are actually normalized
eigenvectors. To maximize variance with K dimensions, the
eigenvectors corresponding to top-K eigenvalues are kept.

C. Kernel PCA

Kernel PCA [2] was proposed to reduce dimension in a
non-linear method. Suppose the size of dataset is N , with
d features. Notice that in general, when d < N , the N
data points can not be linearly separated, which results in

limitation of linear PCA. But when d ≥ N they can almost
always be linearly separated. Therefore, a mapping function
Φ (xi) ,where Φ : Rd → RN , is applied to first non-linearly
increase data dimension, then it will be easier to linearly
reduce dimension in the new feature space. However, in most
of cases, it is expensive or infeasible to explicitly calculate
Φ(x), therefore kernel trick is applied here. For data matrix
X, only the inner product K = Φ(X)TΦ(X) is calculated,
where K is a N ∗N matrix named kernel.

The formulation of kernel PCA is derived from PCA by
replacing X with Φ(X), and replacing v with Φ(X)α. Then
XXTv = λv becomes:

φ(X)φ(X)Tφ(X)α = λφ(X)α

φ(X)Tφ(X)φ(X)Tφ(X)α = λφ(X)Tφ(X)α

KKα = λKα

Kα = λα

which gives that α is eigenvector of K. The projected data
points are φ(X)Tv = φ(X)Tφ(X)α = Kα = λα.

The choice of kernel can be arbitrary, and we choose 4
kernels used in sklearn KernelPCA module: Cosine similar-
ity,Polynomial kernel,Sigmoid kernel and RBF kernel, whose
expressions are listed below:

1) Cosine similarity: k(x, y) = xy>

‖x‖‖y‖
2) Polynomial kernel: k(x, y) = (γx>y + c0)d

3) Sigmoid kernel: k(x, y) = tanh(γx>y + c0)
4) RBF kernel: k(x, y) = exp(−γ‖x− y‖2)

D. Linear Discriminative Analysis

Linear Discriminative Analysis (LDA) [3] is a supervised
dimension reduction method, which maximizes the inter-class
variance and minimizes the intra-class variance. Here we use
2-class Fisher’s linear discriminant, which is original form of
LDA, to illustrate this idea formally as below:

J(v) =

(
vTµ1 − vTµ2

)2
σ2

1 + σ2
2

=

(
vTµ1 − vTµ2

)2∑C1

i=1 (vTx1,i − vTµ1)
2

+
∑C2

i=1 (vTx2,i − vTµ2)
2

=
vT (µ1 − µ2) (µ1 − µ2)

T
v

vT (Σ2 + Σ1) v

=
vTSBv

vTSWv

where Σj =
∑Cj

i=1 (x2,i − µ2) (x2,i − µ2)
T denotes single

inner class variance, SB denotes variance between classes,
SW denotes variance within classes. Since the scale of v does
not affect J(v), we add constraint vTSWv = 1, then the
optimization problem becomes:

max
v

vTSBv, s.t. vTSWv = 1

Apply Lagrange multipliers for this constrained maximiza-
tion.

L = vTSBv − λ(vTSWv − 1)
∂L

∂v
= 2SBv − 2λSWv = 0

S−1
W SBv = λv

which gives that v is eigenvector of S−1
W SB . The above

2-class LDA can also be extended to multi-class LDA by
defining SB as below:

SB =
1

C

C∑
i=1

(µi − µ) (µi − µ)
T

where C is number of classes, µi is mean value of class
Ci and µ is global mean of data. Since the rank of SB
is at most C − 1, the rank of SW is at most n feature,
therefore the number of non-zero eigenvector should satisfy
neigenvector = min(C − 1, n feature). From this we derive
that the maximal dimension after LDA should not exceed
min(C − 1, n feature).

E. Factor Analysis
Factor Analysis (FA) is originated from Psychology [4].

In sklearn document 1, FA is illustrated as continuous latent
variable model:

X = WH + M + E

where X is observed dataset, H ∼ N (0, I) is unobserved
latent variable, W is weight of H, also called factor loading
matrix, M is mean value of X, E ∼ N (0,Ψ) is Gaussian
noise. If H is known, the posterior distribution of X can be
derived as below, and we assume X is centered thus M = 0:

E(X|H = hi) = Whi + E(E) = Whi

Cov(X|H = hi) = E((X− E(X|H = hi))(X− E(X|H = hi))
T)

= Ψ

P (X|H = hi) = N (Whi,Ψ)

Also notice that we assume H is unit Gaussian prior, thus
the marginal distribution of X is:

E(X) = WE(H) + E(E) = 0

Cov(X) = E(XXT)

= E(WHHTWT + EHTWT +WHET + EET)

= WWT + Ψ

P (X) = N
(
0,WWT + Ψ

)
Here we assume Ψ = diag (ψ1, ψ2, . . . , ψn), and we can for-
mulate fitting of FA as an maximum log-likelihood problem:

max
W,Ψ

∑
xi

log p(xi)

⇒ max
W,Ψ

∑
xi

(−1

2
log |WWT + Ψ| − 1

2
log xi(WWT + Ψ)−1xTi

⇒ WWT + Ψ =
∑
xi

xix
T
i = XXT

1https://scikit-learn.org/stable/modules/decomposition.html

2

To solve the problem above, we can iteratively update W,Ψ
by:

1) set some initial value of Ψ
2) estimate W as W =

(√
λ1η1,

√
λ2η2, · · · ,

√
λmηm

)
,

where m is dimension of H, λ, η is eigenvalue and
eigenvector of XXT .

3) update Ψ based on W , and go to step 2 if not converge.
Suppose X is n×p matrix, then W is n×m. When m < p, W
is a feature reduced form of X. Note that different assumption
of error covariance Ψ leads to different models:

1) Ψ = σ2I leads to probabilistic model of PCA, or PPCA
2) Ψ = diag (ψ1, ψ2, . . . , ψn) leads to Factor Analysis.

Both models essentially estimate a Gaussian with a low-
rank covariance matrix, therefore Factor analysis can produce
similar components as PCA. The main advantage for Factor
Analysis over PCA is that it can model the variance in every
direction of the input space independently (heteroscedastic
noise)

F. T-Distributed Stochastic Neighbor Embedding (t-SNE)

T-distributed Stochastic Neighbor Embedding (t-SNE) is
a machine learning algorithm for visualization. [5] It is a
nonlinear dimensionality reduction technique well-suited for
embedding high-dimensional data for visualization in a low-
dimensional space of two or three dimensions. What t-SNE
does is to find a way to project data into a low dimensional
space, so that the clustering in the high dimensional space
is preserved. In mathematics, it is an unsupervised learning
algorithm to construct a data distribution in low dimensional
space which has a similar distribution in high dimensional
space.

That is, given a set of N high-dimensional data points
x1,x2, . . . ,xN (xi ∈ Rm), t-SNE first calculate the condi-
tional probability to represent similarity of two data points,
based on the distance between two points, as follows,

pj|i =
exp(−‖xi − xj‖/2σi)∑
k 6=i exp(−‖xi − xj‖/2σi)

(1)

In Equation 1, the σi is a hyper-parameter determined by a
predefined perplexity Perp. That is, it should satisfy

Perp = 2H(pi), where H(pi) = −
∑
j

pj|i log pj|i (2)

T-SNE aims to learn a low dimension representation
y1,y2, . . . ,yN (yi ∈ Rd, d < m) that reflects the similarities
pj|i as well as possible. To this end, similarities in low
dimensional space is also measured, but in a different way.

qj|i =
(1 + ‖xi − xj‖)−1∑
k 6=i(1 + ‖xi − xk‖)−1

(3)

The locations of the points yi in the map are determined by
minimizing the (non-symmetric) Kullback–Leibler divergence
of the distribution.

C =
∑
i

KL(Pi‖Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i
(4)

There are two things that need to be noted, which guarantee
a good clustering effect. The first is the t-distribution. As we
can see in Fig. 1, data points with higher similarity tend to be
nearer and data points with lower similarity tend to be farther.
The second is inside the cost function. It tends to penalize
more on points with large distance in low-dim space but small
distance in high-dim space (p big q small). This means t-SNE
tends to preserve local distribution.

Fig. 1. Comparison between normal distribution and t-distribution

G. Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) is an unsupervised learn-
ing algorithm that computes low-dimensional, neighborhood-
preserving embeddings of high-dimensional inputs. [6] “Lo-
cally linear” means to use nearest neighbors to linearly re-
construct the target data point. “Embedding” means to learn
a representation in low-dimensional space to preserve the
neighborhood relationship. Fig. 2 shows an illustration of
the neighborhood-preserving mapping discovered by LLE,
which discovers the global internal coordinates of the manifold
without signals that explicitly indicate how the data should be
embedded in two dimensions.

-1
0

1 0

-1

0

1

2

3

-1
0

1 0

55 -1

0

1

2

3

-2 -1 0 1 2
-2

-1

0

1

2

Fig. 2. Illustration of the neighborhood-preserving mapping discovered by
LLE

Mathematically, given a set of N high-dimensional data
points x1,x2, . . . ,xN (xi ∈ Rm), LLE aims to obtain a low-
dim representation y1,y2, . . . ,yN (yi ∈ Rd, d < m). It can
be divided into 3 steps: (i) finding nearest neighbors (ii) linear
reconstruction (iii) low dimensional embedding.

Step 1: Finding nearest neighbors

3

For every data point xi, select its k−nearest neighbors,
based on Euclidean distance. k is a hyper-parameter in this
algorithm.

Step 2: Linear reconstruction
Let the set of the k−nearest neighbors of xi be Nk(xi).

Initialize a matrix M ∈ RN×N , for xj /∈ Nk(xi), let Wij = 0.
LLE first optimizes this reconstruction error to get the optimal
reconstruction.

min
W

ε(W) =

N∑
i=1

‖xi −
∑

j∈Nk(xi)

Wijxj‖2

s.t. W1 = 1

(5)

Step 3: Low-dimensional Embedding
After calculating the local relationship in the high dimen-

sional space, LLE will learn a data representation in low-dim
space to preserve this relationship. I.e., LLE will minimize the
equation below

min
Y

Φ(Y) =

N∑
i=1

‖yi −
N∑
j=1

Wijyj‖2

s.t. y>i yi = 1

y>i 1 = 0

(6)

We need the first constraint because yi = 0 is a trivial
solution. The second constraint is a zero-mean condition. Since
W1 = 1, adding a bias to yi will not affect the optimality.

H. Multi-Dimensional Scaling (MDS)

Multidimensional Scaling (MDS) [7] is also a manifold
learning method. In this project, we only discuss classical
MDS, which is also known as Principal Coordinates Anal-
ysis (PCoA). In MDS with classical scaling, the inputs are
projected into the subspace that best preserves their pairwise
distance. It takes an input matrix giving dissimilarities be-
tween pairs of items and outputs a coordinate matrix whose
configuration minimizes a loss function called “strain”.

In mathematics, this problem can be formulated as given
the distance matrix of N data points D = (dij) ∈ RN×N ,
with dij = dist(xi,xj). MDS aims to find the coordinates of
these data points x1,x2, . . . ,xN (xi ∈ Rd). To this end, MDS
transforms “approximating distances” into “approximating in-
ner products”.

Below shows the mathematical derivations in MDS. Let
B = (bij) ∈ RN×N be the inner product matrix of the N
data points, i.e. bij = x>i xj . It is obvious that

d2
ij = bii + bjj − 2bij (7)

MDS aims to represent B in the form of D. The basic
assumption is that the N data points are decentralized.

N∑
i=1

xi = 0 (8)

Then we have, the sum of any row or column of B is zero.

N∑
i=1

bij =

N∑
i=1

x>i xj =

(
N∑
i=1

x>i

)
xj = 0 (9)

Based on Eq. 7, Eq. 8 and Eq. 9, we have

N∑
i=1

d2
ij =

N∑
i=1

bii +Nbjj

N∑
j=1

d2
ij =

N∑
i=1

bii +Nbii

N∑
i=1

N∑
j=1

d2
ij = 2N

N∑
i=1

bii

(10)

Then we can calculate bij

bij = −1

2

d2
ij −

1

N

N∑
i=1

d2
ij −

1

N

N∑
j=1

d2
ij +

1

N2

N∑
i=1

N∑
j=1

d2
ij

(11)

Let the matrix H = I − 1
N 11> and D̄ = (d2

ij), we can
represent B as

B = −1

2
HD̄H (12)

Then our optimization problem becomes clear

min
X∈Rd×N

‖B −X>X‖2F (13)

This problem has a closed-form solution

X = Λ
1
2
mEm (14)

where Λm is the diagonal matrix composed of d largest
eigenvalues of B, Em is the matrix composed of the corre-
sponding d eigenvectors.

I. Auto-Encoder (AE)
An autoencoder is a type of artificial neural network used to

learn efficient data codings in an unsupervised manner. [9] The
aim of an autoencoder is to learn a representation (encoding)
for a set of data, typically for dimensionality reduction. It is
a neural network that learns to copy its input to its output.
It has a hidden layer that describes a code used to represent
the input, and it is constituted by two main parts: an encoder
that maps the input into the code, and a decoder that maps the
code to a reconstruction of the original input.

The overall architecture of an autoencoder is shown in Fig.
3.To specify the algorithm of autoencoder in mathematics, it
takes the input x ∈ X ⊂ Rm and maps it to h ∈ F ⊂ Rd.

An autoencoder consists of two parts, the encoder and the
decoder, which can be defined as transitions φ and ψ, such
that:

φ : X → F
ψ : F → X
φ, ψ = arg min

φ,ψ
‖X − (φ ◦ ψ)(X)‖2

(15)

4

x ොxh

encoder 𝜙 decoder 𝜓

Fig. 3. Illustration of a typical autoencoder.

Since the feature space F have lower dimensionality than
the input space X , the feature vector h = φ(x) can be regarded
as a compressed representation of the input x.

III. EXPERIMENT

A. Dataset

Download Animals with Attributes (AwA2) dataset [8]. This
dataset consists of 37322 images of 50 animal classes with
2048-dimensional pre-extracted deep learning features for each
image. We randomly split the images in each category into
60% for training and 40% for testing, using stratified sampling.
We also use 5-fold cross-validation within the training set to
select optimal dimensionality.

B. Support Vector Classifier

In all following experiments, we use Support Vector Clas-
sifier (SVC) to classify processed data. The implementation is
sklearn.svm.SVC, with linear kernel and one-vs-rest decision
function. The regularization parameter C is set as 1.0. As a
baseline, we also perform grid search on C, using original data
features.

TABLE I
ACCURACY OF SVC WITH DIFFERENT VALUES OF C

C Accuracy

0.125 92.45%
0.25 92.45%
0.5 92.44%
1 92.39%
2 92.30%
4 92.24%
8 92.20%

C. Feature Selection by Variance

Using variance as the criterion, we select top 2–2000
features with largest variance and evaluate them with SVM.
Results are given in Table I. Selection-by-variance works sur-
prisingly well given its simplicity. Trained with approximately
1/8 of original features (250), SVM gives an accuracy within
97.5% of the accuracy when all features are used.

TABLE II
ACCURACY WITH TOP k FEATURES, SELECTED BY VARIANCE

k Accuracy

2 9.85%
5 24.80%
10 46.97%
50 81.70%

100 87.92%
250 90.13%
500 91.60%

1000 92.17%
2000 92.87%

We also observe that, in our case, the effect of doubling
the number of features, from 1 000 to 2 000, is only a
0.7% increase in accuracy, suggesting existence of redundant
information in the additional 1 000 features. We hypothesize
that, if the top 1 000 features give good performance on SVM,
the last 1 000, with redudant information, should also give
comparable performance. We test our hypothesis by training
the SVM with top k features with least variance, giving the
results in Table III. Our results confirm our hypothesis.

TABLE III
ACCURACY WITH TOP k FEATURES, SELECTED BY LEAST VARIANCE

k Accuracy

2 6.46%
5 10.36%
10 18.84%
50 55.22%

100 71.65%
250 82.74%
500 87.32%

1000 90.19%
2000 92.83%

D. PCA and Kernel PCA

We use sklearn.decomposition.KernelPCA module to imple-
ment PCA, with kernel coefficient γ = 1/nfeatures, polyno-
mial degree d = 3, bias term c0 = 1. To accelerate computa-
tion, we set parallel jobs n jobs = 4. Please note that large
number of parallel jobs may lead to memory error. Table IV
and Figure 4 show the result, from which we know that RBF
kernel performs worst and cosine kernel performs best. All
kernels improve accuracy when dimension increase, however,
when dimension is greater than 32, then accuracy gain is much
more slower. Therefore dimension = 32, kernel = cosine
may be a reasonable choice of parameters.

Also notice that when dimension is less than 16, the cosine
kernel outperforms all other kernels, when dimension is greater
than 16, cosine and polynomial have almost same accuracy.
The performance gap between RBF kernel and other kernels
increase with higher dimension.

To further illustrate effect of PCA, we also visualize 2-
dimension linear PCA results as in Figure 5. The visualization
shows that PCA indeed maximizes data variance, since most

5

TABLE IV
ACCURACY OF PCA WITH DIFFERENT KERNELS AND DIMENSIONS

Dimension Linear RBF Poly Sigmoid Cosine

2 18.47% 17.31% 19.98% 17.14% 19.56%
4 44.85% 43.85% 44.44% 42.62% 47.63%
8 69.47% 65.58% 68.54% 66.48% 71.18%
16 82.60% 77.20% 82.80% 81.63% 83.04%
32 87.84% 83.64% 88.82% 88.30% 89.21%
64 89.22% 86.32% 90.87% 90.63% 91.10%

128 89.95% 88.00% 91.77% 91.54% 92.03%
256 90.73% 89.02% 92.17% 92.07% 92.39%
512 91.62% 89.80% 92.40% 92.23% 92.66%

1024 92.06% 90.18% 92.47% 92.33% 92.75%
2048 92.30% 90.84% 92.67% 92.34% 92.85%

Fig. 4. Accuracy-Dimension curve of PCA with different kernels. The x-axis
is log-scale axis, since the dimension is increasing exponentially.

of data are distributed in a large range. However, PCA is
unsupervised model, therefore data with different labels are
not separated.

Fig. 5. Visualization of 2-dimensional linear PCA result, where numbers
denotes class labels. We also use different colors for different class labels.

E. LDA

LDA is implemented by
sklearn.discriminant analysis.LinearDiscriminantAnalysis,
with default parameters. We use default solver svd, which
does not rely on the calculation of the covariance matrix.
This can be an advantage in our experiment since the
number of features is large. Note that LDA requires
n component ≤ min(n classes− 1, n features), therefore
the grid search range is limited to [1,50). Table V shows part
of result, and Figure 6 show the whole results. The figure
indicates that accuracy grows with dimension, however when
dimension is greater than 30, accuracy grows much slower.

Then we can assume 30 is a reasonable choice of dimension
for LDA. Also, such choice is consistent with results in PCA
in previous section.

TABLE V
ACCURACY OF LDA WITH DIFFERENT DIMENSIONS

Dimension Accuracy

1 19.67%
2 29.60%
4 51.03%
8 57.33%
16 79.19%
32 88.85%
49 91.18%

Fig. 6. Accuracy-Dimension curve of LDA

To compare effect of LDA and PCA, we visualize 2-
dimension LDA results as in Figure 7. Since LDA is su-
pervised model, it separates different classes. However, 2
dimensions are not enough to separate 50 classes in this
dataset, therefore some classes are overlapped.

Fig. 7. Visualization of 2-dimensional LDA result, where numbers denotes
class labels. We also use different colors for different class labels.

F. FA

Result of FA is illustrated in Table VI and Figure 8. Here
we compare FA with linear PCA, and find that them perform
similar when D < 10, FA outperforms linear PCA when 10 <
D < 100,m and FA performs worse than linear PCA when
400 < D. This might result from the heteroscedastic property
of FA, i.e. when dimension is low, it is helpful to consider
independent variance of each dimension, but when dimension
is high, such consideration might be too complex and it might
lead to over-fitting.

6

We also visualize 2-dimensional FA as Figure 9. The result
is very similar with linear PCA, which further validates
theoretical similarity between FA and PCA.

TABLE VI
ACCURACY OF FA WITH DIFFERENT DIMENSIONS

Dimension Accuracy

2 18.18%
4 44.15%
8 69.90%
16 83.57%
32 88.58%
64 90.04%

128 90.06%
256 90.63%
512 91.23%
1024 91.62%
2048 91.62%

Fig. 8. Accuracy-Dimension curve of FA compared with linear PCA. The
x-axis is log-scale axis, since the dimension is increasing exponentially.

Fig. 9. Visualization of 2-dimensional FA result, where numbers denotes class
labels. We also use different colors for different class labels.

G. t-Distributed Stochastic Neighbor Embedding (t-SNE)

We use sklearn.manifold.TSNE module to implement t-SNE.
There several hyper-parameters we need to choose. Similar
to mentioned above, n components is the reduced dimension
number. The parameter init is to determine how the low
dimensional data are initialized. There are two ways – pca
and random, which initialized the output in the form of PCA
representation and in a random manner respectively. In our ex-
periment, we only use pca for initialization by default. The pa-
rameter method indicates how the gradient will be calculated.
If it is exact, then t-SNE will compute the real gradient on

each data point, which is O(N2). However, barnes hut leads
to an approximation of the real gradient based on Barnes-Hut
tree, which is O(N logN). But this approximation can only
be used when n components=2 or n components=3. In this
experiment, we focus on the classification and visualization
of t-SNE, and we also analyze the drawbacks of t-SNE.

We first compare the results of using Barnes-Hut approx-
imation for gradients and using the exact gradients during
optimization. Tab. VII shows the result. We find that the
performance of these two methods are similar to each other.
However, during experiment, we find that using Barnes-Hut
approximation will accelerate the algorithm by more than
100x, i.e. the computation time and resource are dramatically
saved.

TABLE VII
ACCURACY OF T-SNE USING DIFFERENT GRADIENT CALCULATION

METHODS

Dimension Accuracy
Barnes Hut exact

2 86.90% 87.50%
3 87.80% 86.70%

Since t-SNE depends heavily on computational resources,
in the official documentation of scikit-learn [10], it suggests
that It is highly recommended to use another dimensionality
reduction method (e.g. PCA for dense data or TruncatedSVD
for sparse data) to reduce the number of dimensions to a
reasonable amount (e.g. 50) if the number of features is very
high. Same as above, we conduct this experiment on 2 and
3 dimensions with Barnes-Hut approximation. We tried 3
methods:

1) use raw data as input of t-SNE
2) pre-reduce to 64-dim using PCA
3) pre-reduce to 49-dim using LDA
Tab. VIII shows the result. During experiment we found

that preprocessing the raw data will increase time efficiency,
which is the same as our expectation. From tab. VIII we also
find that it is clear that preprocessing data using LDA will
dramatically boost the performance!

TABLE VIII
ACCURACY OF T-SNE USING DIFFERENT PREPROCESSING METHODS

Dimension Accuracy
raw PCA to 64 LDA to 49

2 86.90% 86.90% 95.40%
3 87.80% 87.50% 95.50%

This result is reasonable if we think over the motivation of
LDA – to maximize the distances of clusters and the tightness
of each cluster, i.e. maximize σbetween and minimize σwithin.
We can get a more intuitive understanding if we visualize
the data, as is shown in Fig. 10. We find it obvious that the
“clusters” in Fig. 10(c) (using LDA as preprocessing) become
farther and each “cluster” becomes tighter.

7

(a) t-SNE 2D Visual-
ization without prepro-
cessing

(b) t-SNE 2D Visual-
ization with PCA pre-
processing

(c) t-SNE 2D Visual-
ization with LDA pre-
processing

Fig. 10. Illustration of 2D t-SNE with different preprocessing tricks

It seems that “LDA then t-SNE” is the best configuration
– even 2 dimension leads to accuracy of 95+% on validation
data. However, we still conducted experiments with the num-
ber of dimensions as the variant. This time, we all use the exact
gradient for fair comparison. Due to the computational limi-
tation, we only did experiments of dimensions {2, 3, 4, 8, 16}.
However, it is enough to show the problem. Tab. IX shows
that higher dimension leads to worse performance. Maybe it
is because higher dimension makes it harder to converge. In
short, it is not only slow but with performance not as good as
“LDA then t-SNE”.

TABLE IX
ACCURACY OF T-SNE WITH DIFFERENT DIMENSIONS

Dimension Accuracy

2 87.50%
3 86.70%
4 87.00%
8 78.00%
16 77.80%

Therefore, “LDA then t-SNE” with 2 or 3 dimensions is not
only a good method for dimensionality reduction, but also a
good algorithm for data visualization.

H. Locally Linear Embedding (LLE)

We use sklearn.manifold.LocallyLinearEmbedding module
to implement LLE. There are 2 hyper-parameters we need
to choose – the reduced data dimension and the number
of neighbors to reconstruct each data point. All the other
parameters are chosen as default. Due to the computational
limitation, we only conduct experiment on {2, 8, 32, 128}
dimensions and {4, 16, 64} nearest neighbors. Tab. X shows
the validation accuracy of the reduced data using linear SVC.
Unfortunately, we found the performance is dramatically low-
ered – only an accuracy of no more than or near 10%. Though
the performance is better with higher dimensions and more
neighbors, the performance is still not acceptable.

However, if we change the linear kernel in SVC to an
rbf kernel, we see a dramatic increase in performance, as is
shown in Tab. XI. In Sec. IV-A, we visualize the reduced data
and give a possible explanation. As we can see, reduced data
with 128 dimensions reconstructed by 64 nearest neighbors

TABLE X
ACCURACY OF LLE WITH DIFFERENT DIMENSIONS AND NEIGHBORS

(CLASSIFIED WITH LINEAR KERNEL)

#neighbor=4 #neighbor=16 #neighbor=64
#dim=2 4.6% 4.5% 4.3%
#dim=8 4.3% 4.4% 4.2%

#dim=32 4.5% 4.6% 5.9%
#dim=128 11.2% 9% 8.4%

will lead to the best performance, which is good enough and
comparable to PCA then SVC with rbf kernel.

TABLE XI
ACCURACY OF LLE WITH DIFFERENT DIMENSIONS AND NEIGHBORS

(CLASSIFIED WITH RBF KERNEL)

#neighbor=4 #neighbor=16 #neighbor=64
#dim=2 10.9% 34.9% 38.4%
#dim=8 43.4% 65.5% 74.7%

#dim=32 84.2% 84.9% 87.4%
#dim=128 88.7% 89.2% 90.8%

I. Multi-Dimensional Scaling (MDS)

We use sklearn.manifold.MDS module to implement MDS.
We conduct experiments of metric MDS by setting the pa-
rameter metric to be true by default. The distance metric in
this algorithm is Euclidean distance by default. We explore
the performance of MDS with different reduced dimensions.
Unfortunately, due to the computational limitation, we only
do experiments of {2, 4, 8, 16} dimensions. Tab. XII shows
the result. We find the result close to that in PCA. But due to
the low efficiency, this algorithm may not be acceptable.

TABLE XII
ACCURACY OF MDS WITH DIFFERENT DIMENSIONSS (CLASSIFIED WITH

RBF KERNEL)

Dimension Accuracy

2 18.80%
4 39.30%
8 51.70%
16 73.40%

Actually, we think MDS has a very close relationship with
PCA, mathematically. In Sec. IV-A, we visualize the reduced
data and find it similar to the visualization of PCA, which
confirms our thoughts. However, due to the low efficiency and
high computational demands of this algorithm, we do not think
MDS is a good way for dimensionality reduction. But may be
it can work well in some data analysis tasks. For example, it
may work well in analyzing similarity or dissimilarity data.

J. Auto-Encoder (AE)

In this section, we implemented a simple autoencoder using
PyTorch [11]. The structure of the encoder φ and the decoder
ψ are simple, both consisting 4 linear layers and 3 ReLUs
between each linear layer. To expatiate, the dimensions of
input and hidden layers in φ are 2048, 1024, 512, 512, d,

8

and the dimensions of hidden layers in ψ and the output are
d, 512, 512, 1024, 2048. In our experiment, we choose the
encoded dimension in {2, 4, 8, 16, 32, 64, 128, 256, 512}.

As for training, we simply use the stochastic gradient
descent (SGD) method with batch size 128. The learning rate
shrinks from 10−3 to 10−4 exponentially for 200 epochs. We
trained each autoencoder to convergence on a single NVIDIA
RTX2080Ti and used the encoded d−dimensional data as
new data representation. Tab. XIII shows the performance. We
used both linear kernel and rbf kernel for classification. We
find the performance is similar. As we can see, the optimal
dimension is 128 or 256. Lower dimension my suffer from
insufficient data representation, while higher dimension may
lead the network harder to train. During experiment, we also
find that this straight-forward method guarantees much more
efficiency compared to MDS, LLE, etc..

TABLE XIII
ACCURACY OF AUTOENCODER WITH DIFFERENT DIMENSIONS

Dimension Accuracy
linear rbf

2 70.30% 62.60%
4 85.30% 87%
8 87.20% 89.90%
16 89% 90.40%
32 89.30% 91.70%
64 90.80% 92.80%

128 91% 92.80%
256 90.90% 93.10%
512 90.40% 92.70%

Now we propose a possible explanation of the performance
of using autoencoder for dimensionality reduction. Fig. 11
shows the reconstruction loss. As we can see, the reconstruc-
tion loss achieved the lowest point on 128 and 256 (they are
very close). However, the reconstruction loss corresponding to
d = 512 is higher than these two. So may be the reconstruction
loss somehow reflect the performance.

0 25 50 75 100 125 150 175 200
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
co

ns
tru

ct
io

n
Lo

ss

dim=2
dim=4
dim=8
dim=16
dim=32
dim=64
dim=128
dim=256
dim=512

Fig. 11. Reconstruction loss of different dimension number.

IV. FURTHER DISCUSSION

A. Feature Learning: What are they learning?

During the implementation of different feature learning
methods, we found hard to understand the difference of the

behaviors of different methods, though their motivations are
clear enough. So this section provides a brief discussion
to illustrate some of our thoughts about what on earth are
these algorithms learning, i.e. the properties of the reduced
data tending to have, and also their possible reasons. These
algorithms do have similarities in that they all aims to preserve
something in data representation, be it the pairwise distances
or local properties. However, if we visualize them they are
totally different, we summarize the behavior of each feature
learning algorithm as follows.
• t-SNE: learn the clustering of the raw data implicitly
• LLE: place most data points on a very small number of

axises
• MDS: treat the data globally, very similar behavior to that

of PCA
• AutoEncoder: transform the raw data to a radical-pattern

representation
We first begin with t-SNE. In the formulation of t-SNE,

there is not anything concerning “clustering”. It even seems
similar to the formulation of MDS, which aims to preserve the
distances between each pair of data points. However, t-SNE
aims to preserve the relative distance instead. This is achieved
by assigning a conditional distribution to each data point, as
is shown in Eq. 1. So what leads to the clustering effect of
t-SNE?

We think 2 main factors contribute to this. First is in the
loss function, as is shown in Eq. 4. Since the non-symmetric
property of Kullback–Leibler divergence, the loss tends to
penalize more on large pj|i modeled by small qj|i. Hence,
t-SNE preserves local similarity structure of the data. The
second reason is in the choice of t-distribution when modeling
the reduced data. It will lead similar data points closer and set
dissimilar data points apart (see Fig. 1).

As a result, t-SNE actually learns a clustered representation
of the raw data. As is shown in Fig. 12, t-SNE on LDA-
preprocessed data leads to a better clustering, same as the
motivation of LDA.

(a) t-SNE 2D Visualization with-
out preprocessing

(b) t-SNE 2D Visualization with
LDA preprocessing

Fig. 12. Illustration of 2D t-SNE

Then we analyze the behavior of LLE. As we can see in
Fig. 13, we find that LLE tends to place most data points
on a very small number of “axises”. Also, we find that more
neighbors to reconstruct leads to thicker axises. This can be

9

explained by the pattern of the loss function in LLE. To
simplify, that is to minimize ‖yi −

∑
j∈N (yi)

wjyj‖ where
w is the pre-calculated reconstruction coefficient. Therefore,
when the number of neighbors chosen is small, the reduced
data tends to form straight lines because only this will lead
to the smallest loss. This distribution is clearly not friendly
to linear SVC, leading to the results in Tab. X. However, this
algorithm do preserve local relationship in a very compact
way. That is the reason why its performance is not bad using
kernel SVC (see Tab. XI).

(a) K = 4 (b) K = 16 (c) K = 64

Fig. 13. Illustration of 2D LLE with different K

Now we show the connections between MDS and PCA.
As we can see in Fig. 14, both MDS and PCA do not set
data points in different classes apart but let them remain
“combining” to each other. The motivation of MDS is clear –
to preserve the pairwise distance in reduced data. But MDS
does not minimize the loss w.r.t. the distance matrix explicitly.
Instead, it uses a trick to represent the inner product matrix
w.r.t. the distance matrix, and then optimizes on this inner
product matrix. So MDS is suitable in problems like this: we
have known the distance matrix of several data points, then
how to reconstruct the coordinates of these data points. We
now focus on the last step of both algorithms. Let the inner
product matrix be B.

In PCA, the last step is Bv = λv. Then we choose the
eigenvectors of top-d eigenvalues to compose the matrix V .
In this way, V >X is the reduced data. In MDS, the last step
is minY ‖B − Y >Y ‖. Then we choose the eigenvectors of
top-d eigenvalues to compose the matrix V , and let Λ be a
diagonal matrix composed ot the d eigenvalues. In this way
Λ1/2V is the reduced data.

In short, MDS and PCA are similar in that (i) both of them
considers the global relationship of the raw data, and (ii) both
of them are related to eigenvalues and eigenvectors of the inner
product matrix B = X>X .

The behavior of autoencoder is also worth mentioning. As is
shown in Fig. 15, autoencoder tends to transform the raw data
to a radical-pattern representation. Maybe it is because data
with this pattern is the easiest to reconstruct the raw data. I.e.
each direction corresponds to one pattern of reconstruction.
Also, we think that directions of the rays simply corresponds
to the label of the data point.

In this section, we analyze some interesting phenomenon in
feature learning algorithms, which may also provide another
way to boost our understanding of these seemingly abstruse
methods.

(a) MDS 2D Visualization (b) PCA 2D Visualization

Fig. 14. Illustration of 2D MDS, with PCA for comparison

Fig. 15. Illustration of 2D AutoEncoder

B. Overall Comparison

In this section, we summarize the optimal configuration of
each dimensionality reduction method. Note that “optimal”
not only refers to accuracy, but also refers to computational
efficiency concerning time and resource demands. Tab. XIV
shows the result.

TABLE XIV
SUMMARY OF THE BEST CONFIGURATION OF ALL METHODS USED IN THIS

REPORT

Method Accuracy Dimension Other Configurations

Selection-by-Variance 92.17% 1000
PCA 91.62% 512

Kernel PCA 92.39% 256 use cosine kernel
LDA 88.85% 32
FA 91.23% 512

t-SNE 95.40% 2 preprocess using LDA
LLE 90.80% 128 use 64-NN
MDS 73.40% 16

AutoEncoder 93.10% 256

There are also many experimental conclusions in this
project. We summarize them below.

• In the total 2000+ dimension features, 1000 are redun-
dant. We test our hypothesis by training the SVM with
top k features with least variance.

• In PCA, all kernels improve accuracy when dimension
increase, however, when dimension is greater than 32,
then accuracy gain is much more slower.

10

• In LDA, accuracy grows with dimension, however when
dimension is greater than 30, accuracy grows much
slower.

• The results of FA shows its heteroscedastic property, i.e.
when dimension is low, it is helpful to consider indepen-
dent variance of each dimension, but when dimension
is high, such consideration might be too complex and it
might lead to over-fitting.

• “LDA then t-SNE” with 2 or 3 dimensions is not only
a good method for dimensionality reduction, but also a
good algorithm for data visualization.

• The accuracy of LLE increases with more dimensions and
more neighbors, but it is still not an ideal way because
of the high computational cost.

• MDS is not an efficient method for dimensionality reduc-
tion due to its computational demands, but it is a suitable
algorithm for data reconstruction tasks based on pairwise
similarity

• AutoEncoder is a straight-forward way for dimensionality
reduction of great efficiency and good performance. How-
ever, high dimensions may lead to difficulty of training
the network.

• Patterns of the data derived from different feature learning
methods are analyzed, which are interesting and provide
us with some intuitive understanding.

V. CONCLUSION

In this project report, we evaluated the performance of some
popular dimensionality reduction algorithms on Animals with
Attributes (AwA2) dataset, including variance feature selec-
tion, PCA, kernel PCA, FA, LDA, t-SNE, LLE, MDS and AE.
Our experiment shows that t-SNE with LDA preprocessing
gives the best performance, achieving 95.40% accuracy with
only two dimensions.

REFERENCES

[1] K. Pearson, “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[2] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural computation, vol. 10,
no. 5, pp. 1299–1319, 1998.

[3] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[4] L. L. Thurstone, “Multiple factor analysis.,” Psychological review,
vol. 38, no. 5, p. 406, 1931.

[5] V. D. M. Laurens and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 2605, pp. 2579–2605, 2008.

[6] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[7] A. Mead, “Review of the development of multidimensional scaling
methods,” Journal of the Royal Statistical Society: Series D (The
Statistician), vol. 41, no. 1, pp. 27–39, 1992.

[8] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 9, pp. 2251–2265, 2019.

[9] M. A. Kramer, “Nonlinear principal component analysis using autoas-
sociative neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243,
1991.

[10] S. learn 0.22.2 Documentation, “sklearn.manifold.tsne.” https://
scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html.

[11] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

11

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

	Introduction
	Method
	Feature Selection
	Principal Component Analysis
	Kernel PCA
	Linear Discriminative Analysis
	Factor Analysis
	T-Distributed Stochastic Neighbor Embedding (t-SNE)
	Locally Linear Embedding (LLE)
	Multi-Dimensional Scaling (MDS)
	Auto-Encoder (AE)

	Experiment
	Dataset
	Support Vector Classifier
	Feature Selection by Variance
	PCA and Kernel PCA
	LDA
	FA
	t-Distributed Stochastic Neighbor Embedding (t-SNE)
	Locally Linear Embedding (LLE)
	Multi-Dimensional Scaling (MDS)
	Auto-Encoder (AE)

	Further Discussion
	Feature Learning: What are they learning?
	Overall Comparison

	Conclusion
	References

