
1

CS 245 Project 2: Distance Metric
Baochen Yang, Yunhao Zhang, Yiqun Diao

Abstract—In the field of machine learning, a typical kind of classification algorithms are based on distances between samples, for
example, K-Nearest Neighbors (KNN) algorithm. Thus, how to calculate distances between samples becomes a hot research problem.
In this paper, we implemented various distance metrics and then used KNN algorithm to test their performance on Animals with
Attributes (AwA2) dataset. We evaluated a total of 14 distance metrics, including 4 simple metrics (Manhattan distance, Euclidean
distance, Chebyshev distance and Cosine distance) and 10 metric learning algorithms (LMNN, LFDA, MLKR, NCA, RCA, ITML, LSML,
MMC, SDML and Supervised RCA). Then we analyzed our results in detail and found that Euclidean distance performs best among
simple metrics and even beats 9 out of 10 metric learning algorithms on AwA2 dataset. Only LMNN method slightly outperforms
Euclidean distance (the baseline in each experiment) by less than 1%. Based on those analysis, We finally came to a conclusion that
(1) Euclidean distance is the best choice considering both performance and complexity; (2) metric learning algorithms may fail to
perform well due to the noise in the dataset.

Index Terms—simple metric, metric learning, evaluation

F

1 INTRODUCTION

In the past decade, Artificial Intelligence has greatly
changed our life, based on dozens of effective machine
learning algorithms. Among machine learning algorithms,
one typical kind is designed to extract features from the
distances between samples. The most classical and famous
one is called K-Nearest Neighbors (KNN) algorithm, which
refers to the neighbors of one sample to make predictions.
The choice of distance metric can significantly affect the
results of these algorithms, so it is rewarding to figure out
how to reasonably measure the distances between samples
or between distributions.

Generally, distance metrics can be roughly divided into
two categories: simple distance metrics and metric learning
methods. Simple distance metrics mean that we have a
fixed formula to calculate the distance. For vector metric,
the most well-known one is Minkowsky distance, or Lp
distance. It just calculates the Lp norm of the difference of
two vectors, containing a bunch of famous geometric dis-
tance, e.g. Manhattan distance (p = 1), Euclidean distance
(p = 2), Chebyshev distance (p = +∞) and so on. Another
simple vector metric is cosine distance, which calculates
distances based on the angle between two vectors. These
methods are easy and with clear geometric explanations. It
is easy to verify that they all satisfy three rules of distances:
non-negative, symmetric and triangle inequality. There are
also simple metrics for distributions, such as Earth’s Mover
Distance (EMD), Maximum Mean Discrepancy (MMD), KL
divergence, JD divergence, Bregman divergence and so on.
But in this paper, we only focused on metrics for vectors.

Compared to simple distance metrics, metric learning
methods do not have a fixed mathematical equation to
calculate the distances. Instead, they set an objective func-
tion and learn a distance metric to optimize this function
using gradient descendent or other optimization tools. Ex-
amples include Large Margin Nearest Neighbor (LMNN),
Local Fisher Discriminant Analysis (LFDA), Metric Learning
for Kernel Regression (MLKR), Neighborhood Components

Analysis (NCA) and so on.
In this paper, we evaluated performances of both simple

distance metrics and metric learning methods on Animals
with Attributes (AwA2) data set by comparing the KNN
classification accuracy based on different distance metrics.
We made huge effort to finish a comprehensive experiment
of a total of 14 different methods. We also made a detailed
analysis on pros and cons of those distance metrics.

2 METHOD

2.1 K-nearest Neighbors (KNN)

The k-nearest neighbors algorithm (KNN) is a non-
parametric, lazy learning method for regression and clas-
sification. We use KNN as a classifier in this project. As
for KNN classification, an object is assigned to the class
most common among its k nearest neighbors (k is a posi-
tive integer, typically small). Therefore, there are two main
factors that will affect the performance of a KNN classifier:
1) distance used to determine “nearest neighbors”; 2) the
parameter k.

As KNN is a lazy learning method, the training phase
only stores the feature vectors and labels of training set.
In testing phase, distance between every pair of samples
is computed and label is assigned as the most frequent
label among the k samples nearest to that query point.
Therefore, KNN suffers great computational complexity. We
have learned in Project 1 that principal component analysis
(PCA) can reduce dimensionality of high dimensional data
and still keeps most information used for classification. To
reduce time complexity, we first use PCA to reduce data
dimension to 50 and then use KNN for classification.

2.2 Simple Distance Metrics

KNN needs to compute the distance between pairs of data
points. In this section, distance is computed by a determin-
istic function.

2

2.2.1 Minkowski Distance
The Minkowski distance of order p between two points x =
{x1, x2, · · ·xm} and y = {y1, y2, · · · ym} is defined as:

dp(x, y) = (
m∑
i=1

|xi − yi|p)
1
p (1)

Assign different value to p, we can get different distance
metrics. For example:

• Manhattan distance:

dmanh(x, y) = d1(x, y) =
m∑
i=1

|xi − yi|

• Euclidean distance:

deucl(x, y) = d2(x, y) =
√

(x− y)T (x− y)

• Chebyshev distance:

dcheb(x, y) = lim
p→+∞

dp(x, y) = max
i
|xi − yi|

2.2.2 Cosine Distance
Cosine similarity measures similarity of two data points by
the angle between them:

cos(x,y) =
xT y

‖x‖‖y‖
(2)

cos(x,y) ranges between [−1, 1] . The more similar x
and y are, the bigger cos(x,y) is. To scale distance to
[0, 1] and transform similarity to distance, cosine distance
is defined as:

dcosine(x, y) =
1

2
(1− cos(x,y)) (3)

2.3 Large Margin Nearest Neighbor(LMNN)

Large Margin Nearest Neighbor(LMNN) [1] is a supervised
method specially designed for KNN. The goal is to learn
a Mahanalobis distance metric making k-nearest neighbors
always belong to the same class while examples from dif-
ferent classes are separated by a large margin. Formally, the
goal is to learn a linear transformation L : Rd → Rd, which
we will use to compute the squared distance as:

D(xi, xj) = ‖L(xi − xj)‖2 = (xi − xj)TLTL(xi − xj) (4)

For each sample (xi, yi), we select k target neighbors
(xj , yj) for it. Target neighbors are other samples with the
same label yi that we wish to have minimal distance to
xi. Without prior knowledge, target neighbors are often
selected as the k nearest samples labels yi in Euclidean
space. We use ηij ∈ {0, 1} to denote whether xj is a target
neighbor of xi. ηij = 1 if xj is a target neighbor.

The loss function is defined as:

L =
∑
ij

ηijD(xi, xj)

+ c
∑
ijl

ηij(1− yjl)[1 +D(xi, xj)−D(xj , xl)]+
(5)

Here yjl ∈ {0, 1}, yjl = 0 if yj = yl. [z]+ = max(z, 0)
denotes the standard hinge loss.

The loss function in 5 has two terms. The first term is to
minimize the distance between xi and its target neighbors.
The second term is trying to separated samples with other
labels and target neighbors by a margin 1. Ideally, we want
D(xj , xl) ≥ D(xi, xj) + 1. As hard margin is impossible to
achieve when dataset is large, we have to use hinge loss to
build soft margin.

2.4 Local Fisher Discriminant Analysis (LFDA)
Local Fisher Discriminant Analysis (LFDA) [2] is a linear su-
pervised dimensionality reduction method. It is particularly
useful when dealing with multi-modality, where one ore
more classes consist of separate clusters in input space. The
main idea of LFDA is same as Linear Discriminant Anal-
ysis(LDA): to minimum the “within-class scatter matrix”
and maximum the “between-class scatter matrix”. Formally,
the “within-class scatter matrix” S̃(w) and “between-class
scatter matrix” S̃(b) are defined as:

S̃(w) =
1

2

n∑
i,j

W̃
(w)
i,j (xi − xj)(xi − xj)T

S̃(b) =
1

2

n∑
i,j

W̃
(b)
i,j (xi − xj)(xi − xj)T

(6)

where

W̃
(w)
i,j =

{
Ai,j/nl, if yi = yj = l

0, if yi 6= yj
(7)

W̃
(b)
i,j =

{
Ai,j(1/n− 1/nl), if yi = yj = l

1/n, if yi 6= yj
(8)

In Equation 7 and 8, Ai,j is the (i, j)-th entry of the affinity
matrix A. Ai,j is large if xi and xj are close. We can give
different weights to different pairs (xi, xj) using affinity
matrix A. A imports local property into Fisher Discriminant
Analysis. It can be proved that if Ai,j = 1, S̃(w) and S̃(b)

equal to those we defined in LDA.
In this paper, we use local scaling to compute affinity

matrix A:

Ai,j = exp− (‖xi − xj‖2)

σiσj

σi = ‖xi − x(K)
i ‖

(9)

where x(K)
i is the K-th nearest neighbor of xi.

Then the learning problem becomes derive the LFDA
transformation matrix TLFDA:

TLFDA = arg max
T

[tr((TTS(w)T)−1TTS(b)T)] (10)

2.5 Metric Learning for Kernel Regression (MLKR)
Kernel regression [3] is a well-established method for non-
linear regression in which the target value for a test point
is estimated using a weighted average of the surrounding
training samples. The weights are typically obtained by
applying a distance-based kernel function to each of the
samples, which presumes the existence of a well-defined
distance metric. MLKR algorithm learn a task-specific metric
over the input space in which small distances between two
vectors imply similar target values. This metric gives rise to

3

an appropriate kernel function with parameters set entirely
from the data.

In kernel regression, the value of ŷi ≈ f(~xt) is approxi-
mated by a weighted average of the training samples:

ŷi =

∑
j 6=i yjkij∑
j 6=i kij

(11)

where kij = k(~xi, ~xj) ≥ 0 is referred to as the kernel
function.

MLKR applies to any distance-based kernel function
k(~xi, ~xj) = kD(Dθ(~xi, ~xj)) with differentiable dependence
on parameter θ specifying the distance function Dθ . Specif-
ically, MLKR consists of setting initial values of θ, and then
adjusting the values using a gradient descent procedure:

∆θ = −ε∂L
∂θ

(12)

where ε is an adaptive step-size, and the loss function L
is the cumulative leave-one-out quadratic regression error
of the training samples:

L =
∑
i

(yi − ŷi)2 (13)

with ŷi is defined as in (11).

2.6 Neighborhood Components Analysis (NCA)
NCA [4] is a supervised learning algorithm. Its purpose is
to obtain a linear space transfer matrix by learning on the
training set to maximize the average leave-one classification
effect in the new conversion space. Therefore, the key of the
algorithm is how to learn to obtain a positive definite matrix
A related to the spatial transformation matrix. The matrix
A can be obtained by defining a differentiable objective
function of A and solving it using the iterative method.

We begin with a labeled data set consisting of n real-
valued input vectors x1, ..., xn in RD and corresponding
class labels c1, ..., cn. NCA essentially wants to learn a
positive definite matrix A related to the conversion matrix
Q such that Q = ATA is established, so that the metric
function can be written as:

d(x, y) = (x− y)TQ(x− y) = (Ax−Ay)T (Ax−Ay) (14)

When calculating the error using the leave-one-out
method, the error function is not continuous with respect
to A, so we introduce a differentiable softmax function:

pij =
exp(−||Axi −Axj ||2)∑
k 6=i exp(−||Axi −Axk||2)

, pii = 0 (15)

where pij denotes the probability that xi will eventually
choose xj as a neighbor and inherit its class label cj in the
process of randomly selecting neighbors. Then the probabil-
ity that x is correctly classified is:

pi =
∑
j∈Ci

pij (16)

where Ci denotes the set of points in the same class as i.
The objective we maximize is the expected number of points
correctly classified under this scheme:

f(A) =
∑
i

∑
j∈Ci

pij =
∑
i

pi (17)

Differentiating f with respect to the transformation ma-
trix A yields a gradient rule which we can use for learning
(denote xij = xi − xj):

∂f

∂A
= −2A

∑
i

∑
j∈Ci

pij(xijx
T
ij −

∑
k

pikxikx
T
ik) (18)

Through continuous iterative optimization, the optimal
solution of A can be obtained.

2.7 Relevant Components Analysis (RCA)
Relevant Component Analysis (RCA) [5] is a method that
seeks to identify and down-scale global unwanted variabil-
ity within the data. The method changes the feature space
used for data representation, by a global linear transforma-
tion which assigns large weights to ”relevant dimensions”
and low weights to ”irrelevant dimensions”.

These”relevant dimensions” are estimated using chun-
klets. We define a chunklet as a subset of points that are
known to belong to the same although unknown class;
Chunklets are obtained from equivalence relations by apply-
ing a transitive closure. The RCA transformation is intended
to reduce clutter, so that in the new feature space, the
inherent structure of the data can be more easily unraveled.
The method can be used as a preprocessing step for the
unsupervised clustering of the data or nearest neighbor
classification.

For a training set with n training points in k chunklets,
the algorithm is efficient since it simply amounts to comput-
ing:

C =
1

n

k∑
j=1

nj∑
i=1

(xji − m̂j)(xji − m̂j)
T (19)

where chunklet j consists of {xji}
nj

i=1 with a mean m̂j .
The inverse of C−1 is used as the Mahalanobis matrix.

2.8 Information Theoretic Metric Learning (ITML)
ITML [6] is a semi-supervised learning approach. It mini-
mizes the differential relative entropy between two multi-
variate Gaussians under constraints on the distance func-
tion, which can be formulated into a Bregman optimization
problem by minimizing the LogDet divergence subject to
linear constraints.

The objective function of ITML is shown as follows:

min KL(p(x;M0)||p(x;M))

s.t. dM (xi, xj) ≤ u, (xi, xj) ∈ S
dM (xi, xj) ≥ l, (xi, xj) ∈ D

(20)

In the objective function above, M represents the metric
to be learned, M0 represents the prior metric. Two points
are considered similar if the Mahalanobis distance between
them is smaller than a given upper bound, i.e., a relatively
small value u; two points are considered dissimilar if the
Mahalanobis distance between them is larger than a given
lower bound, i.e., a sufficiently large value l. S represents
all pairs of similar points and D represents all pairs of
dissimilar points. The objective function is to minimize the
KL divergence between M and M0 to avoid overfitting, and
make the learned metric M to satisfy the threshold. Since

4

the ”closeness” between M and M0 is measured via KL
divergence, this method measures the difference between
two distributions in an entropy perspective. Therefore, this
metric learning method is called an information-theoretic
approach.

2.9 Least Squared-residual Metric Learning (LSML)

LSML algorithm wants to keep the partial ordering of dis-
tances between each two samples after the projection. It also
learns a Mahalanobis matrix M to project samples to a new
space which facilitates the classification, so we need to tell
the label information to supervise this learning process.

Let us denote X = {x1, x2, ..., xn} as the samples. First,
we calculate a set S ⊂ {1, 2, ..., n}4 such that

S = {(a, b, c, d) | d(xa, xb) < d(xc, xd)} (21)

where d(xa, xb) = ‖xa − xb‖2 means the Euclidean
distance between sample xa and xb.

After we apply the Mahalanobis distance matrix, we
would like to keep the partial ordering of distances. For ex-
ample, if (a, b, c, d) ∈ S, which means d(xa, xb) < d(xc, xd),
we want dM (xa, xb) < dM (xc, xd), where dM (xa, xb)
equals the Mahalanobis distance between xa and xb. If
dM (xa, xb) > dM (xc, xd) in the projection space, we shall
punish this behavior using the loss function. So the loss
function is defined as

L = Dld(M,M0)+
∑

(a,b,c,d)∈S

H(dM (xa, xb)− dM (xc, xd))

H(x) =

{
0 x ≤ 0

x2 x > 0

Dld(M,M0) = tr(MM0)− log det(M)
(22)

where M0 is a prior distance matrix and is generally set as
identity matrix if there is no prior knowledge.

Let us examine (22). For each (a, b, c, d) ∈ S, if
dM (xa, xb) < dM (xc, xd) remains, the loss won’t in-
crease. However, when dM (xa, xb) > dM (xc, xd) happens,
[dM (xa, xb) − dM (xc, xd)]

2 will be added to the loss to
punish this case. Hence we call this algorithm Least Square-
residual, because it has a squared loss for residual part.
Dld(M,M0) makes sure that M is neither too small nor just
the trivial case. If values in M are too small, each distance
becomes close to 0, and the squared loss H(x) will become
meaningless. If M = I , there is no error in the distance
ordering, but nothing is learned! This is why Dld(M,M0)
should be added to the loss based on some prior knowledge
M0.

2.10 Mahalanobis Metric for Clustering (MMC)

MMC [7] is a classical method which aims to minimize
the sum of Mahalanobis distances between samples of the
same clusters, while making the sum of Mahalanobis dis-
tances between samples of different clusters larger than a
threshold. Thus, it becomes a convex optimization problem,
which can be solved efficiently. MMC has the similar idea
as Linear Discriminative Analysis (LDA) in dimensionality

reduction, so it also needs labels to supervise its training. To
formulate its idea rigorously in mathematics, let us denote
X = {x1, x2, ..., xn} as the samples. With labels of each
sample, we can calculate two sets as follows:

S = {(xi, xj) | xi and xj have the same label}
D = {(xi, xj) | xi and xj have different labels}
Thus, we can write the objective function, i.e.

min
M

∑
(xi,xj)∈S

dM (xi, xj)

s.t.
∑

(xi,xj)∈D

dM (xi, xj) ≥ 1
(23)

where M is a positive semi-definite matrix, and
dM (xi, xj) =

√
(xi − xj)TM(xi − xj) is the Mahalanobis

distance between xi and xj .
The constraints in (23) makes sure that we can split

clusters, rather than get a trivial solution and mix up every
clusters, for example M = O.

2.11 Sparse Determinant Metric Learning (SDML)

SDML [8] furthers the idea of MMC. It also wants to maxi-
mize the Mahalanobis distances between different clusters,
while minimizing the Mahalanobis distances inside each
cluster, so it is a supervised metric learning algorithm.
Besides that, it also prefers M to be sparser. Moreover, we
can set a prior M0 with our prior knowledge on a specific
problem, and the algorithm will prefer M closer to M0.

First, similar to MMC, we also calculate the similarity set
S and dissimilarity set D:

S = {(xi, xj) | xi and xj have the same label}
D = {(xi, xj) | xi and xj have different labels}
Then the loss function intended to maximize inter-

cluster distances while minimizing intra-cluster distances is

Lsplit =
1

2

n∑
i=1

n∑
j=1

Ki,jd
2
M (xi, xj)

=
1

2

n∑
i=1

n∑
j=1

Ki,j(x
T
i Mxi + 2xTi Mxj + xTj Mxj)

=
n∑
i=1

n∑
j=1

Ki,j(x
T
i Mxi + xTi Mxj)

Ki,j =

{
1 (xi, xj) ∈ S
−1 (xi, xj) ∈ D

(24)

Second, if we want M to be sparser, we should use L1
loss on M . In this case, we do not want the elements in the
diagonal of M to be 0, so we use the off-diagonal L1 loss
where

Lsparse =
n∑
i=1

∑
j 6=i
|Mi,j | (25)

Third, if we want M to be closer to our prior knowledge
M0, we should use the log-determinant divergence function:

Dld(M,M0) = tr(MM0)− log det(M) (26)

5

Combining (24), (25) and (26) together, we can derive the
overall loss function of SDML:

min
M

Lsplit + λLsparse + µDld(M,M0)

s.t. M � 0
(27)

where λ > 0 and µ > 0 are hyper parameters indicating
the trade-off between those three loss terms.

2.12 Supervised Relative Components Analysis (RCA)

RCA can be used as a supervised metric learning algorithm.
The Mahalanobis matrix is the weighted sum of covariance
matrix for each cluster. It tries to assign larger weights to
relevant dimensions and smaller weights to irrelevant ones.
Since it is a supervised version, clusters are divided by label
information.

Suppose the input X is projected to Y in a new space,
RCA intends to maximize the mutual information I(X,Y)
while the weighted sum of covariance matrix stays below a
given threshold. To formulate the problem in mathematical
forms, we denote the K original clusters x1, ..., xk, each
cluster xi has samples xi,1, ..., xi,ni

. The projected samples
are denoted as yi,j correspondingly. Then we have

max
Y

I(X,Y)

s.t.

∑k
i=1

∑ni

j=1 ‖yi,j − µi‖2∑k
i=1 ni

≤ C

µi =
1

ni

ni∑
j=1

yi,j

(28)

where C is a constant to limit the weighted sum of covari-
ance matrix.

3 EXPERIMENT

3.1 Data Set and Preprocessing

We evaluated the different distance metrics on Animals
with Attributes (AwA2) data set. This data set consists pre-
extracted 2048-dimension deep learning features for 37322
images of 50 animal classes. We split the images in each
category into 60% for training and 40% for testing.

As the original features have dimension of 2048 and
KNN is a lazy learning method whose computational com-
plexity is highly related to the dimension, we have to reduce
the dimensionality. In this experiment, we use PCA to
reduce dimensionality from 2048 to 50. In Project 1, the ex-
periment shows that this 50-dimensional feature still keeps
most of the information for classification. The following
experiments takes the preprocessed feature as input.

3.2 Hyperparameter Selection

The number of nearest neighbors k is a very important
hyperparameter for KNN algorithm. In this section, we
perform 5-fold cross-validation on training set to determine
the optimal range for k. We only use Euclidean distance as
distance metric. Because we only need to select a range for
k, such simplification is reasonable. The validation result is
shown in Table 1.

TABLE 1: 5-fold cross-validation accuracy for different K

K Accuracy
2 85.51%
5 89.02%
10 89.31%
15 89.23%
20 88.94%
30 88.49%
50 87.51%
80 86.39%
100 85.88%

We can get the optimal range of k for Euclidean distance
is [5, 15]. Smaller k is not robust to noise, and larger k makes
the boundary for different classes unclear. In order to apply
to other distance metrics, we expand the optional range to
[2, 30].

3.3 Simple Distance Metrics
We tried 4 different simple metrics mentioned in Section 2.2
and the results are shown in Table 2 and Figure 1.

TABLE 2: Classification Accuracy of Simple Distance Met-
rics

K
Acc Dist

Manh Eucl Cheb Cosine

2 86.15% 86.66% 83.72% 86.22%
5 89.48% 89.90% 87.45% 89.17%
6 89.35% 89.78% 87.51% 88.86%
7 89.66% 90.13% 87.61% 89.17%
8 89.49% 90.07% 87.58% 89.01%
9 89.52% 90.09% 87.72% 89.22%
10 89.51% 89.87% 87.52% 89.15%
11 89.40% 89.96% 87.61% 89.39%
12 89.32% 89.74% 87.53% 89.12%
13 89.37% 89.75% 87.80% 89.21%
14 89.24% 89.66% 87.78% 89.07%
15 89.25% 89.77% 87.67% 89.00%
20 89.09% 89.56% 87.28% 88.72%
30 88.55% 89.14% 86.79% 88.30%

Fig. 1: Accuracy Curve of Simple Distance Metrics

Getting the result, we make the following observation
and analysis:

• All these curves increase first and decrease after
reaching the optimal value of K. This is because
when K is too small, noise will affect classification

6

greatly. However, when K is too large, including too
many neighbors into the voting process makes the
boundary between different clusters unclear.

• Chebyshev distance performs poorer than the other
three. This is because Chebyshev distance only takes
dimension with max value into consideration. There-
fore, it does not fully use the information hidden in
other dimensions.

• Cosine distance does not satisfy the triangle inequal-
ity. Therefore, sklearn does not imply implement
this method and we have to implement it by our-
selves. Experiments shows that Cosine distance runs
much slower than the other three and performance
is poorer than Euclidean and Manhattan.

3.4 Large Margin Nearest Neighbor(LMNN)
As we have discussed in 2.3, LMNN is specially designed
for KNN. The number of target neighbors k is an important
parameter. We first set k = 3 as most users of LMNN
do. After analysis, we infer that k = K(K is the number
of nearest neighbors in KNN) may achieve better result.
Results for this experiment is shown in Table 3.

TABLE 3: Test Accuracy of LMNN

K Baseline k = 3 k = K
2 86.66% 86.93% 86.94%
5 89.90% 90.15% 90.17%
10 89.87% 90.15% 90.34%
15 89.76% 90.08% 90.26%
20 89.56% 89.90% −
30 89.12% 89.54% −

From the result we can see that LMNN improves the
performance of KNN. This is intuitive because the goal of
LMNN is to pull target neighbors close and push away
samples from different classes. By setting k = K we further
improve the performance of LMNN. In this way, we assume
the closest neighbors in KNN are the target neighbors
selected in LMNN. However, for LMNN, larger k means
more memory consumption. Setting k = K = 20 requires
31.1 GB memory, which we are unable to allocate. For this
reason, we didn’t perform experiments for k = 20 and
k = 30. Therefore, while using LMNN for KNN classifier, it
is important to balance the performance improvement and
memory consumption.

3.5 Local Fisher Discriminant Analysis (LFDA)
LFDA is derived from LDA by adding affinity matrix Ai,j
into scatter matrix. In this experiment, we use local scaling
to compute affinity matrix. A turning hyperparameter for
local scaling is k, and [9] demonstrated that k = 7 works
well on the whole. Therefore, we use this setting through
this experiment.

As we have analyzed in Section 2.4, the main idea
for LFDA is to import local property into LDA. To find
out whether this idea increase performance, we also tried
LDA(ncomponents = 49). The result for LFDA and LDA is
shown in Table 4.

The result shows that performances of LFDA and Eu-
clidean distance is similar. And LDA slightly outperforms

TABLE 4: Test Accuracy of LFDA and LDA

K Baseline LFDA LDA
2 86.66% 86.96% 87.26%
5 89.90% 89.44% 90.25%
10 89.87% 89.50% 90.05%
15 89.76% 89.54% 89.89%
20 89.56% 89.46% 89.54%
30 89.12% 88.76% 89.28%

LFDA, which means importing local property does not
improve the performance. This is because LFDA is specially
designed for multi-modality tasks where samples in a class
form several separate clusters. But mutli-clusters classes
may be rare in our dataset. Although LDA is often used
as a dimensionality reduction method, the goal of it is same
as metric learning: to find a projection that satisfies some
properties. The result shows that LDA performs well and
improves performance.

3.6 Metric Learning for Kernel Regression (MLKR)
MLKR is an algorithm of supervised metric learning,
which learns a distance function by directly minimizing the
leaveone-out regression error. Results for this experiment
are shown in Table 5.

TABLE 5: Test Accuracy of MLKR

K Baseline MLKR
2 86.66% 82.65%
5 89.90% 86.40%
10 89.87% 86.18%
15 89.76% 86.18%
20 89.56% 86.23%
30 89.12% 85.60%

From the results we can see that MLKR does not perform
well on AwA2 data set, since its accuracy is consistently
below the baseline. We know that the MLKR algorithm is
based on kernel regression, and we hope to construct a new
feature space based on the original data to calculate the sim-
ilarity. Therefore, the choice of feature space is crucial to the
performance of the model. Without knowing the form after
feature mapping, we do not know which kernel function is
suitable, and the kernel function only implicitly defines this
feature space. And actually the process of MLKR algorithm
does not include the adjustment of kernel function. There-
fore, the reason for the poor algorithm performance may be
because we failed to select the appropriate kernel function.

3.7 Neighborhood Components Analysis (NCA)
NCA is a distance metric learning algorithm which aims
to improve the accuracy of nearest neighbors classification
compared to the standard Euclidean distance. It aims to
maximize function f(A), which is the the sum of probability
of being correctly classified. Results for this experiment are
shown in Table 6

From the results we can see that NCA does not perform
well on AwA2 data set, since its accuracy is consistently
below the baseline. The method of NCA is not to consider K
nearest neighbors in the new feature space, but to consider

7

TABLE 6: Test Accuracy of NCA

K Baseline NCA
2 86.66% 83.83%
5 89.90% 86.93%
10 89.87% 86.88%
15 89.76% 87.05%
20 89.56% 86.68%
30 89.12% 86.08%

the entire data set as random nearest neighbors in the new
space. Therefore, when we consider k-nearest neighbors in
the new feature space, the accuracy may be affected. In addi-
tion, NCA measures the similarity in the new feature space
by applying Euclidean distance. If combined with other
distance metric methods, it may improve the performance
of NCA on the AwA2 dataset.

3.8 Relative Components Analysis (RCA)

RCA learns a full rank Mahalanobis distance metric based
on a weighted sum of in-chunklets covariance matrices.
It applies a global linear transformation to assign large
weights to relevant dimensions and low weights to irrele-
vant dimensions. Those relevant dimensions are estimated
using “chunklets”, subsets of points that are known to
belong to the same class. Results for this experiment are
shown in Tabel 7

TABLE 7: Test Accuracy of RCA

K Baseline RCA
2 86.66% 84.55%
5 89.90% 87.38%
10 89.87% 87.08%
15 89.76% 87.40%
20 89.56% 86.63%
30 89.12% 86.18%

From the results, we can see that RCA does not perform
well on AwA2 data set, since its accuracy is consistently
below the baseline. The possible reason is that RCA reduces
the global unnecessary variability in the data. Therefore,
there is bound to be some information lost in the process
of our fitting, but this part of information may still con-
tribute to our subsequent classification problems. In other
words, we made a compromise between the integrity of the
information and the dimensions of the data, similar to the
projection of data in the direction of the largest variance in
PCA. This is why our performance has declined.

3.9 Information Theoretic Metric Learning (ITML)

ITML minimizes the (differential) relative entropy, aka Kull-
back–Leibler divergence, between two multivariate Gaus-
sians subject to constraints on the associated Mahalanobis
distance, which can be formulated into a Bregman optimiza-
tion problem by minimizing the LogDet divergence subject
to linear constraints. This algorithm can handle a wide
variety of constraints and can optionally incorporate a prior
on the distance function. Unlike some other methods, ITML
does not rely on an eigenvalue computation or semi-definite

TABLE 8: Test Accuracy of ITML

K Baseline ITML
2 86.66% 84.33%
5 89.90% 87.73%
10 89.87% 87.53%
15 89.76% 87.28%
20 89.56% 87.25%
30 89.12% 86.88%

programming. Results for this experiment are shown in
Table 8.

From the results, we can see that ITML does not perform
well on AwA2 data set, since its accuracy is consistently
below the baseline. The possible reason is that there are two
parameters u and l in our formula that are not confirmed by
training, but are generated by our initialization. But these
two parameters are our most important two constraints.
Therefore, if these two parameters can be adjusted adap-
tively, the ITML method may get better results. In addition,
what the data does not show is that ITML’s training speed
is very fast. Compared with NCA and MLKR, ITML takes
less time to complete the training.

3.10 Least Squared-residual Metric Learning (LSML)
LSML aims to maintain the partial ordering from the orig-
inal space to projected space. Thus, it would not take too
much time. Results for this experiment are shown in Table
9.

TABLE 9: Test Accuracy of LSML

K Baseline LSML
2 85.51% 75.04%
5 89.02% 76.15%

10 89.31% 84.76%
15 89.23% 85.71%
20 88.94% 84.94%
30 88.49% 84.39%

From the results, we can see that LSML does not perform
well on AwA2 data set, since its accuracy is consistently
below the baseline. Maybe it is because we supervise this
learning process without any regularization, and it projects
into a very good space for training data. If there is a direction
that can improve training accuracy, the Mahalanobis matix
will have a tendency to move there. However, for testing
data, this way may spoil its partial ordering and lead to
lower testing accuracy. Another possible explanation is that
the Euclidean distance d(xa, xb) is not a good measurement,
and it cannot effectively represent the actual relationship
between xa and xb. But LSML is based on the Euclidean
distance and tries to maintain its partial ordering. If the
latent information does not lie directly in the Euclidean
distance, it will be difficult for LSML to perform well.

3.11 Mahalanobis Metric for Clustering (MMC)
MMC intends to minimize the sum of Mahalanobis dis-
tances between samples of the same clusters, while making
the sum of Mahalanobis distances between samples of dif-
ferent clusters larger than a threshold. In our experiment, we

8

put features into MMC function after doing PCA to reduce
them to 50-d space.

TABLE 10: Test Accuracy of MMC

K Baseline MMC
2 85.51% 73.94%
5 89.02% 75.70%

10 89.31% 87.53%
15 89.23% 88.15%
20 88.94% 88.42%
30 88.49% 87.99%

As is shown in Table 10, MMC has relatively lower ac-
curacy than the baseline method using Euclidean distances.
This result makes us somewhat puzzled. Now it seems that
using a complicated learning method does not necessarily
guarantee a better classification result, especially in the cases
that K is small. As we analyze, since the data set has a total
of 50 categories, if we learn a projection matrix M , it is very
likely that a few samples become lost in other clusters.

Fig. 2: Data distribution after reducing to 2-d via t-SNE

We use t-SNE to do dimensionality reduction to 2-d
space and visualize the distribution of AwA2 data set. As
is illustrated in Figure 2, there are a small portion of points
mixed with the other cluster. These outliers can confuse the
KNN algorithm, especially when K is small. Even if we
would like to minimize the distances between samples of
the same clusters, our loss function focuses on the whole
picture and cannot totally solve these small errors. In fact,
yet no one can tell what really happens for those outliers,
since their initial position are too far away from their fel-
lows. Thus, the metric learning methods still fail to solve
the problem of outliers, but they can solve the cases when
we need to resize or rotate the co-ordinate to split different
clusters well.

3.12 Sparse Determinant Metric Learning (SDML)
SDML aims to make a trade-off between the following four
tasks:
1) maximize the Mahalanobis distances between different
clusters;
2) minimize the Mahalanobis distances inside each cluster;
3) have a sparser Mahalanobis matrix M (except diagonal

elements);
4) M becomes closer to a prior knowledge M0.

In our experiments, we do not have any prior knowl-
edge, so we use the default value M0 = I . Thus, we can
regard it as MMC plus the preference for sparsity. We also
put the reduced features (50-d, same as previous sections)
into SDML function. Results are in Table 11.

TABLE 11: Test Accuracy of SDML

K Baseline SDML
2 85.51% 77.42%
5 89.02% 84.33%

10 89.31% 81.85%
15 89.23% 82.30%
20 88.94% 82.02%
30 88.49% 81.47%

SDML also fails to outperform the classical Euclidean
metric on AwA2 data set, as expected. Since part of its idea
is similar to MMC, it shares the problem of MMC. The in-
fluence of outliers cannot be eliminated. And the projection
can make it even worse. For further studies, we should try
to smooth the data first and then do metric learning. After
de-noising, the projection could perform better.

3.13 Supervised Relative Components Analysis (RCA)

Supervised RCA maximizes the mutual information
I(X,Y) between original samples X and projected ones
Y . It uses the label information to divide clusters. In
this experiment, we just put the PCA features (50-d) into
RCA Supervised function.

TABLE 12: Test Accuracy of Supervised RCA

K Baseline Supervised RCA
2 85.51% 83.65%
5 89.02% 86.52%
10 89.31% 87.80%
15 89.23% 88.16%
20 88.94% 87.66%
30 88.49% 87.41%

As is shown in Table 12, Supervised RCA does not
perform better than the classic Euclidean metric. But its per-
formance is better than previously mentioned supervised
methods (LSML, MMC, SDML). Thus, we again verify our
statement that metric learning method does not perform
well in AwA2 data set. We regard the noise in the deep
learning features as the crux of this phenomenon. For future
studies, one can try de-noising and then test the processed
features on these distance metrics. If provided with more
computational resources, we would like to try the de-
noising experiments and see if our analysis is reasonable
or not.

4 CONCLUSION

In this paper, we implemented various distance metrics
for vectors and then used KNN algorithm to test their
performance on Animals with Attributes (AwA2) dataset.
We evaluated a total of 14 distance metrics, including 4

9

simple metrics and 10 metric learning algorithms. We also
visualized the data distribution to help us analyze.

From all the results above, we can conclude that (1)
Euclidean distance is the best choice considering both per-
formance and complexity; (2) most metric learning algo-
rithms have worse performance than Euclidean distance; (3)
only LMNN outperforms Euclidean distance by less than
1%, but consider the computational complexity, we do not
recommend it; (4) metric learning algorithms may fail to
perform well due to the noise in the dataset.

For further studies, provided with more computational
resources, we would like to know how noise affects the
performance of metric learning algorithms. One can try de-
noising algorithms before metric learning algorithms, and
see how much their performances can enhance.

REFERENCES

[1] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” Journal of Machine Learning
Research, vol. 10, no. Feb, pp. 207–244, 2009.

[2] M. Sugiyama, “Dimensionality reduction of multimodal labeled
data by local fisher discriminant analysis,” Journal of machine learn-
ing research, vol. 8, no. May, pp. 1027–1061, 2007.

[3] K. Q. Weinberger and G. Tesauro, “Metric learning for kernel
regression,” in Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, M. Meila and X. Shen, Eds., vol. 2. San
Juan, Puerto Rico: PMLR, 21–24 Mar 2007, pp. 612–619. [Online].
Available: http://proceedings.mlr.press/v2/weinberger07a.html

[4] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R.
Salakhutdinov, “Neighbourhood components analysis,” in
Advances in Neural Information Processing Systems 17, L. K.
Saul, Y. Weiss, and L. Bottou, Eds. MIT Press, 2005, pp.
513–520. [Online]. Available: http://papers.nips.cc/paper/2566-
neighbourhood-components-analysis.pdf

[5] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning
distance functions using equivalence relations,” in Machine
Learning, Proceedings of the Twentieth International Conference (ICML
2003), August 21-24, 2003, Washington, DC, USA, T. Fawcett and
N. Mishra, Eds. AAAI Press, 2003, pp. 11–18. [Online]. Available:
http://www.aaai.org/Library/ICML/2003/icml03-005.php

[6] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proceedings of the 24th International
Conference on Machine Learning, ser. ICML ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 209–216.
[Online]. Available: https://doi.org/10.1145/1273496.1273523

[7] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell, “Distance metric
learning with application to clustering with side-information.” in
International Conference on Neural Information Processing Systems,
2002.

[8] G.-J. Qi, J. Tang, Z.-J. Zha, and T.-S. Chua, “An efficient sparse
metric learning in high-dimensional space via l 1-penalized log-
determinant regularization,” 01 2009.

[9] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,”
in Advances in neural information processing systems, 2005, pp. 1601–
1608.

