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Abstract. Transductive inference is an effective method to solve the
problem of insufficient data in few-shot learning settings. A popular
transductive inference technique for methods based on several metrics
is to use the mean of the most reliable query examples or the confidence-
weighted average of all query samples to update the prototype of each
class. However, it should be noted that the model confidence may be un-
reliable, which may lead to incorrect predictions [6]. Based on the work
in [6], instead of taking each support examples in the support set with
uniform weight, we consider the different modals of the prototype for
each class with the variable queries. For each class, we get a prototype
with attention mechanism under different query examples. Moreover, we
analysis the parameter sensitivity and discuss some disadvantages in [6],
such as the distance function, the scale of original prototype in the cal-
culation of the updated prototype, etc.

1 Introduction

While Deep Learning achieves great performance in various tasks like classifi-
cation and regression, it relies heavily on datasets and computation resources.
When the annotated data is not enough, the performance of a state-of-the-art
model may degrade significantly. In many fields, A lack of data is a reality. For
example, images of rare wild animals are not as much as normal pet images.
Moreover, companies hesitate to spend money on building brand new datasets
of emerging categories due to time or other costs.

Few shot learning, namely learning new concepts with very few labeled ex-
amples just like human, is of great importance. Contemporary approaches to
few-shot learning often decompose training into an auxiliary meta learning phase
where transferable knowledge is learned in the form of good initial conditions [3],
embeddings [13, 17] or optimization strategies [10].

However, previous transductive or semi-supervised inference approaches are
fundamentally limited by the intrinsic unreliability of the labels predicted on
the unseen samples. Consequently, in [6], the authors aim to tackle this problem
by proposing a novel confidence-based transductive inference scheme for metric-
based meta-learning models. Specifically, they first propose to meta-learn the
distance metric to assign different confidence scores to each query instance for
each class, such that the updated prototypes obtained by confidence-weighted
averaging of the queries improve classification of the query samples.
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In this report, we introduce a model with confidence score to improve the
accuracy and generalization of the model, as is shown in Figure 1. Instead of
taking each support examples in the support set with uniform weight, we consider
the different modals of the prototype for each class with the variable queries. For
each class, we get a prototype with attention mechanism under different query
examples. The details will be discussed in Section 4.
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Fig. 1. The overall architecture of the proposed model. The meanings of the variables
in the figure is illustrated in the Section 4.

2 Related Work

2.1 Few shot classification and Meta learning

The study of one or few-shot object classification does not rise in recent years.
Earlier works try to involve generative models with complex iterative inference
strategies [2]. In the sense that a model should extract some transferable knowl-
edge from a set of auxiliary tasks, more and more models achieve success by
using meta-learning strategy.

Meta learning is also called learning to learn. It aims to realize a mechanism
to learn new concepts and skills fast with a few or zero training examples, just
like human can recognize a new thing they never saw before. The task of few
shot classification is a case under which meta learning aims to solve. There
are three main classes of meta-learning approaches for addressing the few-shot
classification problem [16].

Optimization-based or gradient descent based schemes like MAML [3] aim to
meta-learn an initial condition that is good for fine-tuning on few-shot problems.
The strategy is to pre-train the model’s weight into a configuration sensitive to
a small change by the fine tuning of later few shot samples. A small change of
the initial weights result in a big improvement for the final classification.
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RNN memory based approaches [17] leverage Recurrent Neural Networks
with memories. It iterates over examples of given problem and accumulates the
knowledge required to solve that problem in its hidden activations, or external
memory. New examples can be classified by comparing them to historic infor-
mation stored in the memory. So ‘learning’ a single target problem can occur
in unrolling the RNN, while learning-to-learn means training the weights of the
RNN by learning many distinct problems.

However, these approaches either suffer from the need to fine-tune on the
target problem, or the complexity of recurrent networks and the issues involved
in ensuring the adequacy of memory [15]. In contrast, our approach is mainly
inspired by Metric Learning Approaches, which solves target problems in an
entirely feed-forward manner with no model updates required.

2.2 Embedding and Metric Learning Approaches

Metric-based few-shot classification methods make the prediction based on the
similarity between the query image and support examples. While the prior ap-
proaches entail some complexity when learning the target few-shot problem,
metric-based methods have attracted considerable attention due to their sim-
plicity and effectiveness.

In general, Metric-based few-shot classification approaches learn a similarity
space in which learning is efficient for few-shot examples. These methods consists
of a feature encoder to extract features from both the labeled and unlabeled
images and a metric function that takes image features as input and predict the
category of unlabeled images.

The learned embedding function works like a projection function that take
every image into a feature similarity space. The metric function then works as
a distance function in this space. By comparing the distance in this learned
similarity space, we can categorize the test samples of few shot classes. In this
space, images are easy to recognise using simple nearest neighbor or linear clas-
sifiers [13, 17]. In this case, the meta-learned transferable knowledge are the
projection functions and the target problem is a simple feed-forward computa-
tion.

Prototypical Networks [13] firstly build a prototype representation of each
class in the embedding space. As an extension of Prototypical Networks, IMF [1]
constructs infinite mixture prototypes by self-adaptation. RelationNet [15] adopts
a distance metric network to learn pointwise relations in both support and query
samples.

2.3 Transductive learning

Since few-shot classification is intrinsically challenging, we may assume that
we can access other unlabeled query examples, which is called transductive
learning [18]. Here we name a few recent works. TPN [9] constructs a nearest-
neighbor graph and propagate labels to pseudo-label the unlabeled query exam-
ples. EGNN [5] similarly constructs a nearest-neighbor graph, but utilizes both
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edge and node features in the update steps. On the other hand, Hou et al. [4]
tries to update class prototypes by picking top-k confident queries with their
own criteria. Our approach also updates class prototypes for each transduction
step, but makes use of all the query examples instead of a small subset of k
examples.

2.4 Semi-supervised learning

In the few-shot classification, semi-supervised learning can access additional
large amount of unlabeled data. Ren et al. [11] proposed several variants of
soft k-means method in prototypical networks [13], where soft label is predicted
confidence of unlabeled sample. Li et al. [8] proposed the self-training method
with pseudo labeling module based on gradient descent approaches [3][14]. Ba-
sically, if an unlabeled query set is used for few-shot classification instead of an
additional unlabeled set, it becomes transductive learning, and vice versa. Our
approach has connection to soft k-means method of Ren et al.[11], but we pre-
dict the confidence with input-adaptive distance metric and use meta-learned
confidence under various perturbations.

3 MCT Method

3.1 Preliminaries

In the conventional C-way N -shot classification, we first sample C classes ran-
domly from the entire set of classes, and then sample N and M examples from
each class for the support set and query set, respectively. We define this sampling
distribution as p(τ). As a result, we have a support set {(xi, yi)}C×Ni=1 and query

set Q = {(x̃i, ỹi)}C×Mi=1 , where y, ỹ ∈ {1, . . . , C} are the class labels.

3.2 Transductive Inference with Soft k-means

MCT [6] is the transductive inference method using the confidence scores of
query examples computed by soft k -means algorithm. Suppose that we are
given an episode consisting of support set S and query set Q. We also define
Sc as the set of support examples in class c and Qx = {x̃1, . . . , x̃C×M} as the
set of all query instances. Starting from prototypical networks, we first compute

the initial prototype P
(0)
c = 1

|Sc|
∑
x∈Sc fθ(x) for each class c = 1, . . . , C. Then,

for each step t = 1, . . . , T, and for each query example x̃ ∈ Qx, we compute its
confidence score, which denote the probability of it belonging to each class c, as
follows:

q(t−1)c (x̃) =
exp

(
−d
(
fθ(x̃), P

(t−1)
c

))
∑C
c′=1 exp

(
−d
(
fθ(x̃), P

(t−1)
c′

)) (1)
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where d(·, ·) is Euclidean distance and P (t−1) denotes t − 1 steps updated
prototype. We then update the prototypes of class c based on the confidence

scores (or soft labels) q
(t−1)
c (x̃) for all x̃ ∈ Qx :

P (t)
c =

∑
x∈Sc 1 · fθ(x) +

∑
x̃∈Qx

q
(t−1)
c (x̃) · fθ(x̃)∑

x∈Sc 1 +
∑

x̃∈Qx
q
(t−1)
c (x̃)

(2)

which is the weighted average that we previously mentioned. Note that the
confidence of the support examples is always 1, since their class labels are ob-
served. We repeat the process until t = 1, . . . , T .

However, for Eq. (2), we argue that it is not reasonable, because the scale
between the original prototype in the calculation of the updated prototype is
limited by the number of shots in each class. Here, we modified the equation as:

P (t)
c =

∑
x∈Sc α · fθ(x) +

∑
x̃∈Qx

q
(t−1)
c (x̃) · fθ(x̃)∑

x∈Sc α+
∑

x̃∈Qx
q
(t−1)
c (x̃)

(3)

We will further do some experiments to test the sensitivity of the model with
regard to α.

3.3 Meta-Confidence Transduction

Meta-learning confidence with input-adaptive distance metric Meta-
learning confidence with input-adaptive distance metric We first propose to
meta-learn the input-adaptive metric by performing transductive inference dur-
ing training with query instances, to obtain a metric that yield performance
improvements when performing transductive inference using it. Specifically, we
meta-learn the distance metric dφ in Eq. (3), which we define as Euclidean dis-
tance with normalization and instance-wise metric scaling gIφ, or pair-wise metric

scaling gPφ :

dIφ (a1,a2) =

∥∥∥∥∥a1/ ‖a1‖2
gIφ (a1)

−
a2/ ‖a2‖2
gIφ (a2)

∥∥∥∥∥
2

, dPφ (a1,a2) =

∥∥∥∥∥ a1/ ‖a1‖2
gPφ (a1,a2)

−
a2/ ‖a2‖2
gPφ (a1,a2)

∥∥∥∥∥
2

2
(4)

for all a1,a2 ∈ Rl. Note that the normalization allows the confidence to
be mainly determined by metric scaling. In order to obtain the optimal scaling

function gφ ∈
{
gIφ, g

P
φ

}
for transduction, we first compute the query likelihoods

after T transduction steps, and then optimize φ, the parameter of the scaling

function gφ by minimizing the following instance-wise loss for dφ ∈
{
dIφ, d

P
φ

}
:
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LτI (θ, φ) =
1

|Q|
∑

(x̃,ỹ)∈Q

− log p(ỹ | x̃,S; θ, φ)

=
1

|Q|
∑

(x̃,ỹ)∈Q

{
dφ

(
fθ(x̃), P (T )

c

)
+

C∑
c′=1

exp
(
−dφ

(
fθ(x̃), P

(T )
c′

))}

As for gφ, we simply use a CNN with fully-connected layers which takes
either the feature map of an instance or the concatenated feature map of a pair
of instances as an input. We set the number of transduction steps to T = 1 for
training to minimize the computational cost, but use T = 10 for test.

4 Proposed Method

4.1 Transductive Inference

MCT proposed the transductive inference with soft k-means that use the con-

fidence scores of query examples to update the initial prototype P
(0)
c for each

class iteratively. Inspired by [1], instead of taking each support examples in the
support set Sc with uniform weight, we consider the different modals of the
prototype for each class with the variable queries.

First, for each query example x̃ ∈ Qx, we compute the similarity score with
all the support instances x ∈ Sc:

att(x̃,x) =
exp(fatt(Wfθ(x), W̃ fθ(x̃)))∑

x′∈Sc exp(fatt(Wfθ(x′), W̃ fθ(x̃)))

where fθ(x) ∈ Rl is the learnt embedding function that maps an input x to
a latent embedding z in an l-dimensional metric space, which is usually a convo-
lutional network. W, W̃ ∈ Rd×l are two weight matrix to transform the learned
feature embedding into support and query space respectively, and fatt(·, ·) is
trained to learn the similarity score of two embeddings.

Then the initial prototype P
(0)
c,x̃ for each class c = 1, . . . , C and query x̃ ∈ Qx

can be computed like prototypical networks [13] but with the attention weights:

P
(0)
c,x̃ =

∑
x∈Sc

att(x̃,x) · fθ(x).

For each step t = 1, . . . , T , we compute the confidence score for each query
example x̃ ∈ Qx, which measures the the possibility that it is belong to class c
as follows:

q
(t−1)
c,x̃ (x̃′) =

exp
(
−fd

(
fθ(x̃

′), P
(t−1)
c,x̃

))
∑C
c′=1 exp

(
−fd

(
fθ(x̃′), P

(t−1)
c′,x̃

)) ,
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where fd(·, ·) is the distance function and P
(t−1)
c,x̃ is the t − 1 steps updated

prototype. At the end of each iteration, we update the prototype based on the
calculated confidence score:

P
(t)
c,x̃ =

α
∑

x∈Sc att(x̃,x) · fθ(x) +
∑

x̃′∈Qx
q
(t−1)
c,x̃ (x̃′) · fθ(x̃′)

α+
∑

x̃′∈Qx
q
(t−1)
c,x̃ (x̃′)

,

where α is a hyper-parameter that balance the weight between original prototype
and confidence score. We repeat the process until t = 1, . . . , T .

4.2 Distance Metric Learning

To measure the transductive inference during training with query instances, we
have to obtain a distance metric fd(·, ·) with meta-learning. Refer to relation
network [15], we learn the distance score with the embedding module:

fd(xi,xj) = gφ (C (fϕ (xi) , fϕ (xj))) ,

where C is the concatenate operation and gφ, fϕ are two DNN modules to learn
the distance and embedding-transfer function respectively.

We optimize all the above parameters w = {φ, ϕ, θ, . . . } by minimizing the
following instance-wise loss with regularization:

LτI =
1

|Q|
∑

(x̃,ỹ)∈Q

− log p(ỹ | x̃,S) + λ‖w‖22

4.3 Model’s drawbacks

Since our proposed model has a large number of parameters, the optimization
of the model is extremely hard. We encountered a lot of obstacles when we were
training the model.

First, the complexity of attention module is to high for the feature maps of
the images. Take ResNet-12 as backbone example, the size of output feature for
an image in the miniImageNet dataset is (512, 6, 6). The corresponding attention
weight matrix W ∈ R2 will be too large for storage and calculation. Therefore, we
employ a flatten and linear operation for the output features for all the images.
However, unlike CNN layer, linear transform is not suitable for image features
to some extent.

Second, since we have generated a corresponding prototype for each query,
it also introduces abundant parameters that are hard to optimize. Through the
experiment we have observed that the value of tensor which stores the hundred
number of prototype images will become uniform as the number of training
epochs increases.

Compared to the meta-learnt distance function, above drawbacks of our at-
tention model to evaluate the similarity between queries and prototypes and
develop unique prototypes for each query image will be hard to optimize and
lead to model collapse. We are still looking forward to developing a method to
learn how to measure the relationship between a group of images with decreased
parameters.
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5 Experiments

5.1 Experimental settings

Datasets Here we intend to use two datasets: Omniglot, miniImageNet and
tieredImageNet. The Omniglot dataset is designed for developing more human-
like learning algorithms. It contains 1623 different handwritten characters from
50 different alphabets. Each of the 1623 characters was drawn online via Ama-
zon’s Mechanical Turk by 20 different people [7]. The miniImageNet dataset
contains 100 classes randomly chosen from ILSVRC-2012 [12] and 600 images of
size 84× 84 pixels per class. It is split into 64 base classes, 16 validation classes
and 20 novel classes. Note that we will choose those two datasets at least. If
time is sufficient, we will also do experiments on other datasets to evaluate our
model.

Baselines We will use various state-of-the-art baselines for few-shot classifica-
tion, including MAML [3], Matching Networks [17],Learning to Compare [15].

Evaluation Metrics The major evaluation metric is accuracy. Here, we will
use different experiments for evaluating our model:

– Implement our proposed model and compare it with other baselines on ac-
curacy.

– In the support set, choose different N (number of categories) and K (num-
ber of labeled samples for each category) in the N way K shot few-shot
classification problem to see the model performance.

– The MCT described in [6] leverages a confidence score in the query set which
is similar to our ideas. However, they only use a mean pooling operation
in the support set. We reckon that attention model used in the support
set is more important, because different samples contribute their properties
to their categories in various degree. Therefore, taking the proportion of
different samples in a category may better improve the performance and
generalization of the model. We should compare our model with MCT to
validate our assumption.

5.2 Main results

We evaluate the performance of MCT model and test the different scalar weight
α of initial prototype and previous one during the iteration. Due to the huge
amount of parameters, the training of proposed attention model for distance
learning is failed and we will not show the performance. All the codes are at-
tached and we are still working to optimize the attention model.

The results show that the value of α is not so significant to the final perfor-
mance of the MCT model, since the iterate round is very small in the training
stage.
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Model
miniImageNet
1-shot 5-shot

MAML [3] 48.70% 63.11%

Matching [17] 43.56% 55.31%

LC [15] 57.02% 71.07%

MTL [14] 61.20% 75.53%

MCT-pair 64.49% 81.63%

α = 0 63.47% 81.54%

α = 0.2 63.07% 81.64%

α = 0.5 61.95% 80.74%

α = 5 63.36% 80.94%

Self-adaptive α 63.15% 80.86%

No scalar 62.69% 72.04%
Table 1. Average classification performance over 1000 randomly generated
episodes. We consider 5-way classification on all the datasets. Some results are re-
ported from [6].

6 Conclusion

In this report, we discuss some confidence measurements between images. The
results of meta-learnt confidence transduction highly improve the performance of
prototype method for few shot classification with a meta-learnt distance metric.
Although we also discuss a possible way that using the attention weight between
query image and images in the support set and learning the prototypes for each
query, the huge amount of parameters lead to model collapse and train failure.
We are looking forward for a more reasonable solution to the problems.
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