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Abstract

1. Introduction

Deep generative models, including Variational Auto-
Encoder (VAE) [12] and Generatative Adversarial Network
(GAN) [7], are currently one of the most promising direc-
tions in Machine Learning. Although the models have a
good performance, they are notoriously hard to train and
their training processes require large amounts of data, es-
pecially for high-dimensional data like images. And once
a model is trained, it cannot be adopted to new categories
without complete retraining. Hence, few-shot image gener-
ation [3] is proposed to generate images for new categories
with only a few images, which draws more attention in im-
age generation.

In this paper, we mainly focus on the challenge of
the few-shot image generation problem, which is studied
only on quite few works. These works can be roughly
divided into three categories: optimization-based, fusion-
based and transformation-based. Particularly, optimization-
based methods [3, 16] use some meta-learning techniques
such as Reptile [19] and MAML [5]. Fusion-based methods
use some fusion techniques, such as MatchingGAN [10]
and F2GAN [11], to fuse the features of conditional images
in order to increase the diverse of generated images. And
transformation-based methods [1, 9] adopt transformation
technique. Though previous works achieve impressive re-
sult on few-shot generation, there still have a key drawback,
the background of the generated image usually lack of di-
versity.

To solve the issue, We follow the idea in [11, 15] and pro-
pose a novel Background-Foreground GAN (BFGAN). The
high-level idea of our model is to make use of the mixed
features learned from a few conditional images within the
same category and separate the background from the fore-
ground. Because for few-shot tasks, we only have little
images in our testing set, that’s why we want to generate
more combination of features of image’s foreground in the
same category. We can combine them with randomly cho-
sen and noise blended background features yielded by the

given conditional images, which can increase the diversity
of generated images. At length our model contains a back-
ground branch and a foreground branch. The foreground
branch can be further divided into two stages: pose/shape
stage and texture stage.Background branch is to generate
background of new images while two stages of foreground
branch aim to generate shape, pose and texture information
of foreground object.

In the background branch, we randomly choose a back-
ground feature vector generated by a decoder among the
few-shot images, then add a noise factor, afterwards a de-
coder is used to generate new background image.

In the foreground branch, we use a few decoders to gen-
erate pose,shape and texture feature vectors for the few-shot
images, then use random interpolation coefficients to mix
each feature vector, e.g. texture vector. Afterwards, We
use a decoder to decode the combined features to generate
images and use a discriminator to ensure the diversity of
generated images.

The paper is organized as follows. First, in section 2
we mention the necessary background in GAN and few-
shot image generation. In section 3, we propose our BF-
GAN in detail. Section 4 briefly describes experiment set-
ting and evaluation metric of our proposed model.Section 5
concludes our contribution and propose some thought about
future work.

2. Related Works

Data Augmentation. This concept [13] is proposed to
amplify the data samples in the training set, which is usu-
ally insufficient in the case of few-shot scenario. Tradi-
tional data augmentation methods, for example: revolve-
ment , crop and color jittering will not generate enough
diversity of pictures. So some premium methods [26][27]
are raised, however the pictures generated by these meth-
ods are not real enough. Moreover, there exist deep gener-
ative models which is able to produce samples with more
diversity and reality, using the distribution of the training
data. These methods can augment data in both feature
augmentation[4][22] and image augmentation[1]. We de-
velop a method of the type of image augmentation, which
means to generate more samples to enrich the training set.
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Generative Adversarial Network. Generative Adversar-
ial Network (GAN) [7][24] is on the grounds of adversar-
ial learning, which trains both generative and discriminate
model to generate more accurate pictures and distinguish
more subtle pictures. In before, unconditional GANs [18]
produce pictures with the help of randomly generated vec-
tors, which is learned by the distribution of training pic-
tures. Afterwards, GANS which is conditioned on one im-
age are raised to alter this picture into a target picture. Re-
cently, some conditional GANS are trying to achieve more
difficult tasks conditioned on different pictures, for exam-
ple, few-shot picture translation[17] and few-shot picture
generation[2][3].In our paper, we will concentrate on the
few-shot picture generation problem.

Few-shot Image Generation. This is a difficult problem
because we need to generate more pictures using only
a few known pictures.Previously, this few-shot picture
generation work is only applicable within limited cases.
In[14][21], Bayesian learning is used to learn small ideas
such as pen stroke and unite the ideas hierarchically to
produce new pictures. More recently, FIGR [3] was raised
to unite adversarial learning with optimization-based
few-shot learning method Reptile [19] to generate new
images. Like FIGR , DAWSON used meta-learning
[6] for generative models based on GAN to accomplish
domain adaptation within seen and unseen types. Metric-
based few-shot learning method Matching Network [23]
was incorporated with Variational Auto-Encoder [20] in
GMN [2] to produce more pictures without fine-tuning
during the testing stage. Matching GAN [10] tried to
utilize learned metric to produce pictures based on a fe-
whttps://www.overleaf.com/project/5fae7ec0e890a12dac49a3bc
conditional pictures. In this work, we raise a idea for few-
shot picture generation, which can generate images with
more diversity and reality.

3. Method
3.1. Overview

The proposed BF-GAN mainly utilize the MixNMatch
[15] and F2GAN [11] structure, and consists of two compo-
nents, namely background branch and foreground branch.
Given a few conditional images X = {xi ∈ RH×W×3}ki=1,
first we generate 4 vectors b, z, p, c, b representing back-
ground code, z and p stands for the object’s shape and
pose while c is on behalf of texture of the objects. In the
background branch, we randomly choose a picture’s back-
ground vector b, add some random noise on it and send it
into background generator Gb. In the foreground branch,
this branch still consists of 2 stages, shape stage and tex-
ture stage. Before both stages, we first interpolate among
z, p, c vectors generated former, using interpolation coeffi-

cients α1, α2...αk (a ∈ Rk, k is the number of conditional
images) for each imagex1, x2...xk. We get a lot of mixed
z′, p′, c′ afterwards. Then in shape stage, we link the con-
tinuous vector z′ and shape vector p′ , send them into shape
generator and we will receive a mask of a new object’s
shape. In texture stage, similarly, we use c′ to generate new
object’s texture information, with shape stage’s mask and
texture stage’s texture, we could generate this new image
on the background image.

3.2. Background Branch

The background branch is proposed to produce features
representing background information for few-shot image
generation. To obtain background branch network, we need
to pre-tain a background generation GAN. Then the encoder
of the background generator will be used as background
branch.Although actually this GAN simultaneously gen-
erate background and foreground features(including pose,
shape and texture features).

For a few conditional images

xi ∈ X = {xi ∈ RH×W×3}ki=1

after we generate background vectors bi from a few condi-
tional images.

bi = Gencb (xi) (1)

we will randomly choose one vector as our base back-
ground vector b, then we add a random noise n on it and get
b′

b′ = b+ n (2)

Afterwards, background image xb ∈ RH×W×3 is gener-
ated from b′ through a generator decoder Gdecb (·)

xb = Gdecb (b′) (3)

To supervise the performence of the background gen-
erator Gb = [Gencb ,Gdecb ], there is a discriminator Db(·)
to estimate the domain of generated image and real image
c = [real, fake].

c = Db(xb) (4)

Loss Term. We train the background branch in generative
adversarial manner. in this branch, we use a generator Gb

and a discriminator pair, Db and Daux. Gb is conditioned
on latent background code b, which controls the different
background types, like sky, ocean, dessert. We use an object
bounding box detector instead of labeled box to separate the
object from the background. We train Gb and Db using two
objectives:

Lb = Lbgadv + Lbgaux (5)
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Figure 1. method overview

where Lbg aux is the auxiliary background classification
loss and Lbg adv is the adversarial loss.

For the adversarial loss Lbg adv , we employ the discrim-
inator on a patch level.

Lbg adv = min
Gb

max
Db

Ex[log(Db(x))]

+ Ez,b[log(1−Db(Gb(z, b)))]

then use Daux to train the generator Gb:

Lbgaux = min
Gb

Ez,b[log(1 − Daux(Gb(z, b)))] (6)

this loss updates Gb so that Daux assigns a high back-
ground probability to the generated background patches.

3.3. Foreground Branch

The foreground branch is responsible to generate the
foreground feature z, p, c from input image, and then cre-
ate new image.

Given a few input foreground images x1, x2, ...xk, we
first utilize encoder to yield 3k vectors : z1, z2, ...zk,
p1, p2, ...pk and c1, c2, ...ck, representing pose, shape and
textures feature respectively.

zi = Gencz (xi) (7)

pi = Gencp (xi) (8)

ci = Gencc (xi) (9)

then we use interpolation method to mix all the k vector
in the same kind.

z′ =

k∑
i=1

αi ∗ zi (10)

where αi is a interpolation coefficient of i’th image and it is
randomly generated while satisfying the following property.

k∑
i=1

αi = 1 (11)

similarly, p’ and c’ are generated in the same mixed way.
After getting the mixed vector z′, p′, c′, shape and pose

mask Mp ∈ RH×W×3 is generated from z′, p′ through a
generator decoder Gdecp (·)

Mp = Gdecp (z′, p′) (12)

To supervise the performance of the pose/shape genera-
tor Gp = [Gencz ,Gencp ,Gdecp ], there is a discriminator Dp(·)
to estimate the domain of generated image and real image
c = [real, fake].

c = Db(xb) (13)

3



Loss Term. We use Dp to induce the pose/shape code
p to represent the hierarchical concept. With no su-
pervision from image labels, we exploit information the-
ory to discover this concept in a completely unsuper-
vised manner. Specifically, we maximize the mutual in-
formation I(p,Pf,m), with Dp approximating the posterior
P (p|Pf,m):

Lp = Lp info = max
Dp,Gp,f ,Gp,m

Ez,p[logDp(p|Pf,m)] (14)

We use Pf,m instead of P so that Dp makes its decision
solely based on the foreground object (shape) and it doesn’t
get influenced by the background.

then for texture code c, we use Dc and Dadv .The loss
function can be divided into two parts:

Lc = Lc adv + Lc info (15)

where

Lc adv = min
Gc

max
Dadv

Ex[log(Dadv(x))]

+ Ez,b,p,c[log(1−Dadv(C)]

and the Lc info is as follows:

Lc info = max
Dc,Gc,f ,Gc,m

Ez,p,c[log(Dc(c|Cf,m))] (16)

Similarly,we use Cf,m instead of C so that Dc makes its
decision solely based on the object (color/texture and shape)
and not get influenced by the background.

3.4. BF-GAN

To separate picture’s background and foreground, we
need to use object detecting bounding box, which is not
labeled by hand but utilizing an object detector. To sepa-
rate the remaining factors of change while not under any
supervision, BF-GAN brings in the information theory as
FineGAN does.

BF-GAN is trained with three losses, the first loss is for
background branch, the next two loss are for pose/shape
stage and texture stage in foreground branch, which use ei-
ther adversarial training to make the generated image look
real and/or mutual information maximization between the
latent code and corresponding image so that each code gains
control over the respective factor (background, pose, shape,
texture/color). We simply denote its full loss as:

LBFGAN = Lb + Lp + Lc (17)

where Lb, Lp, Lc denote the losses in the background,
pose/shape, texture stages.

4. Experiments

We evaluate our BF-GAN’s few-shot image generation
results, its ability to disentangle background and foreground
features,

4.1. Experiment Setting

Dataset To conduct few-shot generation experiments on
the proposed BF-GAN, we utilize only CUB dataset, which
contains 11788 images from 200 categories of birds. Be-
cause we need to disentangle the background and fore-
ground features, we need the bounding boxes of birds to
model these features. And the bounding boxes of birds are
obtained by some existing object detector.

Metric We evaluate the quality of the generated images
by three different metrics: Inception Scores(IS)[25] and
Fréchet Inception Distance(FID)[8]. IS is related with vi-
sual quality of generated images. FID is designed to mea-
sure similarities between two sets of images. We compute
IS on generated images from unseen categories and Fréchet
Inception Distance between the real images and the gener-
ated images from unseen categories.

Implementation details We divide the dataset into two
part. One part for training our model, and the other part
is used as test set, which is never seen by our model. The
training set have 150 categories of birds and it is randomly
chosen from the total 200 categories. The remaining part
of the dataset is used as test set. Then, for each categories
which is never seen by our model, we use K = 3 condi-
tional images from this category to generate new images.
We use Adam optimizer with learning rate 0.0002 and beta
(0.5, 0.99). We train our model for 600 epochs.

4.2. Qualitative Results

Conditional image generation We show our generation
results in Fig. 2. The fake images are generated from the
corresponding three conditional real images. We can see
that although we have only three images of a specific fine-
grain category, we can generate many reasonable samples
with diverse pose, shape, color, and especially background.

Linear interpolation of background and foreground
We perform linear interpolation based on two conditional
images x1, x2 to evaluate whether the space of generated
images is densely populated. As can see from Fig. 3 and
Fig. 4, our BF-GAN can produce more diverse images with
smoother transition between two conditional images. And
both the background and foreground can be transited with-
out influencing each other.
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(a) fake11 (b) fake12 (c) fake13

(d) real11 (e) real12 (f) real13

(g) fake21 (h) fake22 (i) fake23

(j) real21 (k) real22 (l) real23

(m) fake31 (n) fake32 (o) fake33

(p) real31 (q) real32 (r) real33

Figure 2. Conditional generation results

(a) bg1 (b) bg2 (c) bg3 (d) bg4 (e) bg5

(f) bg6 (g) bg7 (h) bg8 (i) bg9 (j) bg10

Figure 3. Background linear interpolation

4.3. Quantitative Results

In Tab. 1, we report the performance of the proposed
BF-GAN on CUB benchmark. We mainly evaluate on two
metrics, namely IS and FID. Note that, both the Simple-

(a) fg1 (b) fg2 (c) fg3 (d) fg4 (e) fg5

(f) fg6 (g) fg7 (h) fg8 (i) fg9 (j) fg10

Figure 4. Foreground linear interpolation

GAN and MixNMatch treat this task as normal generation
task, have 20 samples for each fine-grain categories. Our
BF-GAN perform few-shot generation on this benchmark,
have only 3 samples for each fine-grain categories, which is
much less. As a result, the performance of the proposed BF-
GAN is naturally poor than Simple-GAN and MixNMatch.

Method IS FID

Simple-GAN 31.85 16.69
MixNMatch[15] 50.05 9.17

Ours 26.88 71.93

Table 1. Quantitative result on CUB dataset with IS and FID metric
comapring to some baseline.

5. Conclusion
We mainly followed the idea of [11, 15], and propose the

thought of synthesising the mixed foreground features and
few-shot generating background feature. Which is a new
combination of the few-shot image generation field. For
future work, we will fine-tune the models and test them on
more datasets.
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