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Abstract

Abundant training samples are often required to gener-
ate images for a certain category. However, some particu-
lar classes of data are expensive to obtain and rarely exist.
Few-shot generation aims to augment these classes of data
to aid down-stream tasks such as image classification and
segmentation. Though the task is important and profitable,
this area of research has not been fully explored. Thus,
we propose a L2L-GAN, a fast adaptation framework from
the optimization-based view that simulates the target class
generation process using only source data. We propose the
Generalization Enhancement Module (GEM) that can learn
the fast adaptation process with only the source training
samples, and can be directly applied to the target domain
image generation process. GEM does a layer to layer map-
ping between the network learned with more samples and
the network learned with less samples.

1. Introduction

Image generation has become an increasingly important
topic in machine learning and computer vision communities
these years due to the limitation of human access to some
real world scenes. For example, real-world cameras on ve-
hicles cannot collect enough crucial but rare video images
under conditions such as before car crashing and rapid stop-
ping. And the unbalanced dataset may affect downstream
tasks such as object recognition and segmentation in au-
tonomous driving. Thus, the ability of automatically gen-
erating images based on few source images has become an
increasing demand both in research and industry.

Few-shot image generation is a challenging yet not fully
explored task. The problem can be formulated as follows:
Given the source training sets Xg and X,,, where images of
each class in X are abundant to train a good generator but
X, only contains very limited amount of data. Few-shot
generation attempts to utilize X,, to produce more diverse
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Figure 1. General intuition of how to do few-shot generation.

and realistic images of the given categories. The main dif-
ficulties for this task mainly lies in two parts: (1) How to
learn/adapt quickly using only few novel images and (2)
How to restrict the generated image class to be consistent
with the novel class used for learning. Previous works such
as [2]] and [9] uses meta-learning to direct the model to learn
from small amount of samples. [1] focuses on using gener-
ative models to augment the dataset for better classification
generalizability. [4] [6] utilize conditional images to replace
Gaussian noise input and combines information from dif-
ferent layers of the GAN structure. Different from all these
works, we propose a learning framework that can learn to
make better use of features from different source categories
and apply it to the target novel category.

Motivated by the intuition that image generation models
generate images by doing smart combinations of features
that are seen during the training procedure, we intend to
learn the invariant feature for novel classes and combine it
with different feature variants learned during the training
process. This procedure is shown in [[l However, when
trained by limited number of samples, the model could
easily overfit and features are learn badly. Thus General-
ization Enhancement Module (GEM) is proposed to force
the lightly-trained model to yield similar performance as a
model that is well-trained on large amount of samples.

Our contributions can be summarized as follows:
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Figure 2. Illustration of our method in terms of generator. In the first step of the two-step training phase, f; is trained with abundant base
images and f> is trained with base images that has similar numbers as novel classes. In the second step, GEM modules are added into f2
for training. The green lines indicate the first step of training and orange lines for the second step.

* Propose a GEM module for learning transferable fea-
tures in the source images;

* Propose a new learning framework from the optimiza-
tion and transformation-based view to do few-shot
generation;

* Supplement and provide the few-shot generation com-
munity with code written in PyTorch since most works
are done using Tensorflow.

2. Related work

There is a growing interest on few-shot image genera-
tion recently. Compared with few-shot image classification,
generation tasks are often more difficult. We summarize the
most significant works in this area below.

2.1. Optimization-based methods

Meta-learning methods has attracted much interest in the
area of machine learning due to its superiority in improving
model generalizability. As an algorithm that learns how to
learn, meta-learning trains the generation model end-to-end
via “adjusting” the optimization direction so that SGD is
close to performing search on the novel class loss hyper-
plane. [9] is a representative algorithm using the GAN
structure that optimizes the model using an inner and outer
loop. In the inner loop, the gradients for updating the gen-
erator and discriminator are computed without updating the
actual parameters used for evaluation. Also, it is slightly
different from the normal GAN update process: the discrim-
inator used for calculating the generator’s gradient copies
the parameters from the last iteration. In the outer pro-
cess, the gradients are not directly used for backpropagation
but reweighted first so as to adjust the optimization proce-
dure. Optimization-based methods are rare due to the lim-
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ited number of samples we can access for the novel cate-
gories and the update directions are ambiguous most of the
time.

2.2. Fusion-based methods

Another track of generator models originates from
matching networks[[12]] and relation networks[7], which
makes abundant use of different layer feature maps by fus-
ing them. The intuition is that different depth of neural net-
works exhibits different level of image information, where
the shallow layers extract detailed and higher resolution
features and deep layers extract high-level and semantic-
related information. MatchingGANIS5]] and F2GANJ6] are
recent works that use this idea for few-shot generation.
While their main points of demonstration are different, the
general structures are quite similar. MatchingGAN’s main
point is to match random vectors sampled from Gaussian
distribution with conditional images as the input for GAN.
F2GAN illustrates its idea as fusing high-level features and
filling in low-level feature details. However, these methods
depend heavily on novel images and their performance is
restricted by the novel image qualities. The source images
are not fully made use of and the model trained from them
are only seen as a feature extractor. Also, one-shot learn-
ing seems not applicable for these methods. Our method
intend to make more use of the features learned from the
source classes so that the novel image generation procedure
can make use of information from source class images.

2.3. Transformation-based methods

There’s also a range of methods that are transformation-
based, which focuses on learning the feature mappings from
base category images to novel category images. DAGAN[1]]
mainly focuses on augmenting the novel dataset for image
classification. Instead of using one conditional image for



Algorithm 1 Training procedure of our framework

1

. Input: Source data X, novel data X,, with sample number p. Source generator ¢, source generator ¢2, target generator

¢+, GEM module set {n}fil. Total number of epochs T, GEM modules number K.

Fort=1toT:

Train ¢? using X¢
Fori=1to K:
Select a certain layer in ¢? to add 7; after it

R A A T o

Update 7; only using the n-norm loss
Train ¢7'*" using Xy,
: ¢ < combination of ¢P"*"™ with {r; }1,
: Fine tune ¢, using X,
: Return ¢;

—_ =
W N = O

Initialization: Train ¢ using X, random initialize ¢2, ¢; and {7;}X . Set current epoch .

Randomly sample p samples from X to form a sub-dataset Xt

Calculate the n-norm loss between the feature maps of the selected corresponding layers in ¢! and ¢?

generation, it uses two images from the same base category
to form a class distribution, and interrupts one image with
an Gaussian noise to generate the new image. The new im-
age is expected to have the same distribution as the other
two base images. However, simply adding Gaussian noise
limits the diversity of generated images lead to mode col-
lapse. DeltaGAN[4] adopts the idea of Delta-encoder[11]],
which learns the gap between different classes and uses the
gap (delta) to transfer class distributions. DeltaGAN as-
sumes that the difference between images are consistent for
base and novel categories, and attempts to learn the differ-
ence using base category images. This makes the generation
process suitable for one-shot learning. Our method is dif-
ferent from DeltaGAN as we learn the difference between
model layers, making the generation process more flexible
and diverse, and is not limited to specific input images.

3. Methodology
3.1. Learning Algorithm

Given the source training dataset Xg =
{z;jli=1..Ks,j =1..P;;} which has K, class
and P, samples in 1 class and novel class
Xn = {z]j=1.P,} which has only P, samples,

we separate source training dataset randomly to be two
datasets Xgs = {z4]i =1.K,j=1..Ps, — P,} and
Xen = {zili=1..K,j=1..P,} ( Xgn can also be
constructed by sampling from Xgs). Then we train ¢! (z)
on Xgs, ¢2(z) on Xg, and ¢:(z) on X, separately.
Since ¢! and ¢? are obtained by using less samples,
their generation ability is weak and limited. Thus the
Generalization Enhancement Module (GEM) 7 is added
to enhance models’ ability. The goal of 7 is to satisfy
7(¢%(2)) = ¢L(2). More specifically, by adding GEM,
the feature map of ¢2(z) will resemble the corresponding
one as in ¢!(z), and we train 7 while fixing ¢!(z) and
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®2(z). Our final generative model on novel classes can be
written as 7(¢:(z)). In the optimal case, GEM has both the
ability to improve model generation performance as well as
adapting base categories features to novel categories. The
specific generator structure of the framework is shown in
Figure[2] We currently do not change much of discriminator
network. The algorithm is shown in Algorithm [I]

Despite from the conventional discriminator loss and
generator loss, penalty on the gradient is also used for opti-
mization to aid the discriminator’s learning process. In our
two-step learning procedure, the GEM training is guided
only by n-norm loss (L1 or L2 loss). Thus, the GEM loss
and the total loss function can be written as:

['n = £norm(hsi7 hnz)
X (1)
Liotat = La+Lp+ Y L,

i=1

where hg; is the output feature map of ¢! at the position of
the ¢th GEM module and h,,; is the output feature map of
®? at the position of the ith GEM module. L., intends to
make the two feature maps as similar as possible. Since the
assumption is that the feature map learned by ¢? is much
weaker than the one learned by ¢., it is expected that GEM
can generalize and strengthen the feature representation by
introducing more variant elements.

3.2. Generalization Bound

The method’s performance bounds can be easily infer-
enced and found. On the one hand, GEM learns from the
difference o(¢!, $2) between ¢! and ¢2. Thus it only con-
tains the variant feature information, which is also within
¢1’s generation range. On the other hand, ¢, determines the
basic semantic information of the generated images. Our
final output model is a combination of ¢; and GEM mod-
ules, thus the generated images are expected to be a smart



composition of semantic parts and invariant features. The
generated novel images should be different from provided
ones, but the difference between input and output cannot
exceed o (oL, ?). Thus, the performance/generalization
bound of the final ¢; can be approximated as lower-bounded
by ¢ and upper-bounded by ¢!. This gives us insight
that L2LGAN’s performance greatly depends on the per-
formance of ¢!, which is a generation model that’s trained
by abundant samples. This result is also proved, as shown
in the discussion part.

Layer Resample Norm  Output Shape
image - - 96%96*3
encode 0 stride=2 BN 64%48*48
encode block 1 stride=2 BN 64%24%24
encode block 2 stride=2 BN 128*%12%12
encode block 3 stride=2 BN 128*6*6
decode block 0* upsample BN 128*%12%12
decode block 1* upsample BN 128%24%*24
decode block 2*  upsample BN 64+48%48
decode block 3 upsample BN 64%96*96
decode block 4 - BN 64*%96*96
final conv 1 - BN 64*%96*96
final conv 2 - BN 64*%96*96
final conv 3 - BN 3*96*96
Table 1. Model Architecture

GEM type 1 GEM type 2 GEM type 3
- conv(stride=1) conv(stride=1)
- ReLu ReLu
conv(stride =2) conv(stride =2) conv(stride =2)
upsample upsample upsample

deconv (stride = 1)

Table 2. GEM types

3.3. Model Architecture

The model’s implementation is a combination of UNet
and ResNet, with upsampling and downsampling layers act-
ing as encoder and decoder, as well as skip layer connec-
tions to transfer more information between blocks. This
structure is a well established baseline and is very suitable
as a startup. Detailed information about the model can be
found in Table|l] For our GEM modules, we provide three
variations, as shown in Table The variations differ in
complexity, with increasing number of convolutional layers
and activation functions.

3.4. Learning Process

Despite from various model architectures, we also pro-
vide different learning strategies for GEM modules since al-
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gorithm [T] only provides a general framework for learning.
We list them here:

» Strategy A: Train GEM modules sequentially and in-
dependently from shallow to deep;

o Strategy B: Train GEM modules sequentially, but
when training deeper modules shallow modules are
also updated;

e Strategy C: Train all GEM modules at once.

The detailed learning procedures also differ in many as-
pects, such as using L1/L2 loss and the number of selected
GEM modules. Different settings often lead to different
generation performance, and we often choose the better
ones.

4. Experiments
4.1. Dataset and baselines

We plan to evaluate the L2L-GAN on the Omniglot[8]
dataset and VGGFace[10] dataset. Omniglot consists of
hand written characters from 50 different categories. VG-
GFace is a harder dataset that consists of realworld human
faces and was intended for object detection. These two
datasets are chosen due to their representativeness and they
are used in our baseline DAGAN. The Omniglot contains
1622 classes of different characters, each character has 20
samples. We take 1200 classes of images as source images,
200 as validation images and the remaining class images
as novel classes. For novel classes, we only randomly se-
lect 2 out of 20 images for each class. VGGFace dataset
contains 2354 classes of different human faces from the in-
ternet where each human has 100 face samples. We take
1800 classes as source images and 200 classes as validation
images. The remaining classes are taken as novel classes,
where we randomly select 2 out of 100 images for each
class.

4.2. Evaluation metrics

Various metrics for evaluating few-shot generation were
proposed, and can classified as subjective metrics and ob-
jective metrics. The subjective metrics mainly depend on
human eye impression, including directly examining the
generated image quality and producing the Interpolated
spherical subspace[13]. Objective metrics are numerical
numbers that can measure generated image quality. Popular
metrics include Fréchet Inception Distance (FID)[3]], Incep-
tion Scores (IS)[14] and Learned Perceptual Image Patch
Similarity (LPIPS)[[15]]. Also, the generated images can be
further used for augmenting few-shot classification dataset,
and classification accuracy can be used. However, classifi-
cation accuracy is optional for us since time is limited.
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Figure 3. Comparison of LZLGAN generation results on Omniglot
dataset with other baselines. L2ZLGAN has the best performance.
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Figure 4. Comparison of LZLGAN generation results on VGGFace
dataset with other baselines. LZLGAN has the best performance.

4.2.1 FID

Fréchet Inception Distance(FID) is a improved version of
Inception score, which can better measure the similarity
between generated images and real images. In detail, it
uses the outputs after activation layer to fit a a multidimen-
sional Gaussian, then calculate Fréchet distance between
two Gaussian. The lower the FID is, the better our model
is.

4.3. Experimental results

Fig [ shows our generation results on Omniglot dataset
and Fig [ shows the results on VGGFace dataset. The sam-
ples are chosen from generated images and we compare our
final model ¢; with the two baselines that use small amount
of samples. ¢? is trained on source dataset, approximately
2400 images while ¢"'*"" and ¢, are trained and validated
on approximately 400 images. The comparison shows that
the model only trained on source classes has diffculty in
generalizing to novel classes, while L2ZLGAN is able to pre-
serve the semantic information of the character and greatly
improve the quality of generated images at the same time.
Table [3] shows the improvement in numbers. Concretely,
the GEM module we introduced can close the gap of train-
ing sample numbers, which indicates that it can improve the
generalizability of original models.
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GEMtype 1 1579 2354 150.1
GEMtype2 147.0 1940 1512
GEM type 3 124.6 2052 1322

Table 3. FID comparison on Omniglot dataset
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Figure 5. Ablation study on different GEM module structures.
GEM type 3 yields the best performance.

4.4. Ablation study

We study how different GEM types (as shown in Table
[2) effect the final performance of our L2ZLGAN. Figure [3]
shows the difference between generated images using the
three GEM types. We observe that GEM type 3 gives us
better quality images. And it indicates that more compli-
cated GEM modules can exhibit more information.

We also conducted ablation studies on different training
strategies. Our experimental results shows that the different
training strategies does not differ much in terms of gener-
ated images seen by bare eyes. Thus we do not explicitly
discuss them here. We suspect that different strategies yield
similar performance is due to that GEM modules are simple
under our settings, and the final ¢,’s other parts (apart from
GEM) are not changed anymore after training for the first
time.

5. Conclusion

We propose a new learning framework L2LLGAN for do-
ing few-shot generation, and introduce the Generalization
Enhancement Module (GEM) for strengthening the gener-
alizability of models trained on few images. Our experi-
ment results on Omniglot dataset and VGGFace shows that
the learning framework as well as GEM can justify our pro-
posal. However, drawbacks still exists because our gener-
ated images are not variant enough.

To conclude, L2LGAN is a optimization-based few-shot
learning framework that has the ability to better generation
model performance, but it also has aspects that can be fur-
ther improved. We believe that this research direction is
promising and has a lot of space to explore. Our future di-
rections include adopting more powerful backbone archi-
tectures and introducing more techniques for improving the
generation ability.
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