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1 Introduction

It is well known that deep neural networks can perform well on some tasks using large-scale labeled
data sets. However, powerful like it is, for example, deep neural networks do a quite hard job on
small-scale image classification while a human child can learn a new class quickly through just
one or few images. For a type of unknown or unusual image, people can quickly distinguish that
this type of image does not belong to a known type of image based on the knowledge previously
learned, and deep neural networks are likely to categorize it incorrectly.

To tackle this challenge, a research topic called few-shot image classification, aiming at recogniz-
ing new visual concepts with just a few amount of labeled samples in each class, is brought up.
Certainly, fine-tuning a model based on trained data set on the novel labeled data is the most
intuitive method. Unfortunately, it performs not very well since neural networks will suffer se-
vere overfitting easily on the few given data. Data augmentation and regularization techniques
can alleviate overfitting in such a limited-data regime, but they do not solve it. One promising
direction to few-shot classification is the meta-learning where transferable knowledge is extracted
and propagated from a collection of tasks to prevent overfitting and improve generalization. This
is achieved by repeatedly sampling small subsets from the large pool of base images, effectively
simulating the few-shot scenario. MAML Finn et al. [1] trains the meta-learner to provide a good
initialization of the classifier parameters. Meta-SGD Li et al. [5]’s meta-learner creates an adaptive
learning rate for classifier training. Ravi and Larochelle [7] replaces the gradient-based optimizer
with a LSTM to train the classifier. Meta-learning may take the form of learning a shared metric
[14], a common initialization for few-shot classifiers [7], or a generic inference network [10].

Among different meta strategies, gradient descent based methods, such as MAML approach, are
particularly promising for today’s neural networks [9, 11]. The successful MAML approach aimed
to meta-learn an initial condition (set of neural network weights) that is good for fine-tuning on
few-shot problems. The strategy here is to search for the weight configuration of a given neural
network such that it can be effectively fine-tuned on a sparse data problem within a few gradient-
descent update steps [4].

Figure 1: The basic form of few-shot classification
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For the K-shot N-way classification task, we propose our method based on the famous MAML
algorithm. We simply modified it by increasing the number of times of gradient descent of every
iteration since the original MAML only perform once, which is still room for fine-tuning for better
performance. Since MAML needs to differentiate through the optimization process, it’s not a good
match for problems where we need to perform a large number of gradient steps at test time [6].
Thus, we ignore the high derivative to avoid complicated implementation and high time complexity
at the expense of losing some gradient information. Backtracking line search is typically used for
gradient descent which is easy to implement, and applicable for very general functions. Considering
that the previous MAML algorithm is easy to converge to the local optimal points in most cases,
however, we will search several optimal values from different initial points and only keep the best
one to avoid the bad local optimal points. Our algorithm will be tested on some famous few-shot
classification datasets such as Omniglot, miniImagenet etc., and we will compare the accuracy of
our algorithm with the previous baseline of MAML’s in 5-way 1-shot, 5-way 5-shot, 20-way 1-shot
and 20-way 5-shot classification experiments.

2 Related Work

Recent years,few-shot learning has become more and more important and powerful.Early research
on few-shot learning mainly concentrate on image processing, and the few-shot learning model is
classified into three categories which are model based, metric based and optimization based. Model
based methods aims at updating parameters on few samples rapidly through special model directly
mapping input to prediciton function, metric based method classify the test by using the idea of
nearest neighbour which adopt the metric from samples in batch set and samples in support set, and
optimization based method thinks the trivial gradient descent method is not suitable for few-shot
learning, and it try to modify the optimization method to accomplish the few-shot classification
task.

There are many creative and powerful method has been come up.

Observing the phenomenon many non-parametric allow novel examples to be rapidly assimilated,
while not suffering from catastrophic forgetting.Matching Networks architecture which is a neural
network uses recent advances in attention and memory that enable rapid learning, and it does not
need any finite tuning on the classes it has never seen.[14]

Combining the features of few-shot and zero-shot learning, a Relation Network performs few-shot
recognition by learning to compare query images against few-shot labeled sample images.Relation
Network thinks that metric approach is very important in networks, so it trains a network like
Convolutional neural network to learn the metric. This Relation Network use four convolutional
blocks for embedding module, and the strategy here is to search for the weight configuration of a
given neural network such that it can be effectively fine-tuned on a sparse data problem within a
few gradient-descent update steps.[12]

Focusing on feature, few-shot classification via learned feature-wise transformation use feature-
wise transformation layers to simulate various image feature distributions extracted from the tasks
in different domains, and develope a learning-to-learn method to optimize the hyper-parameters
of the feature-wise transformation layers.Contrary to the exhaustive parameter hand-tuning pro-
cess ,they propose learning-to-learn algorithm to find the hyper-parameters for the feature-wise
transformation layers to capture the variation of image feature distribution across various domain.
[13]

Using the graph neural networks, DPGN extract the instance feature of support and query sample
to obtain the distribution feature for each sample by calculating the instance-level similarity over
all support samples, and DPGN devise a dual complete graph network that combines instance-level
and distribution-level relations, where each node feature is concatenated with corresponding class
label, then node features are updated via the attention mechanism of graph network to propagate
the label information.[15]

There are many models which based on the MAML, that is Model-agnostic meta-learning, which
addresses the general problem of meta-learning including few-shot learning, such as probabilistic
model-agnostic meta-learning which injects noise into gradient descent at meta-test time, and
Bayesian Model-Agnostic Meta-Learning which introduces Bayesian methods for fast adaption
and meta-update.[2, 16]
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Our main contributions are summarized as follows:

We devise a new loss function which doesn’t cause overfiting problem.

Many experiments are conducted on three popular datasets for few-shot learning. By comparing
with our method to the original MAML method, we discover a new prospective to consider the
way which we can do some improvement.

3 Method

First, we will introduce several notations:

1. p(τ) is the task distribution. And τ denotes task sampled from p(τ).

2. Ukτ,A(θ) is the updated θ after k times of gradient descent using data sampled from training
set A of τ .

3. Lτ,B denotes the loss function w.r.t test set B of τ .

With these notations, the optimization goal of MAML can be written as

min
θ

Eτ∼p(τ)[Fτ (θ)] = Eτ∼p(τ)[Lτ,B(U1
τ,A(θ))]

where Fτ is a new definition of loss function w.r.t task τ which aims to minimize the loss of θ
after one iteration of gradient descent. And in every iteration, the algorithm needs to compute the
gradient

∇θFτ (θ) = ∇θLτ,B(U1
τ,A(θ)) (1)

= ∇θLτ,B(θ − α∇θLτ,A(θ)) (2)

which involves the second derivative.

Obviously, we can update θ for more times to achieve lower loss as long as it does not overfit. For
example, we replace U1

τ,A(θ) with Ukτ,A(θ) where k > 1 in the optimization goal. However, this
change will cause higher derivative when performing gradient descent which is very hard to deal
with. In order to avoid derivatives higher than first order, we should draw on the idea of first-order
MAML(FOMAML) and treat those higher derivatives as constants.

Formally, our optimization goal is

min
θ

Eτ∼p(τ)[Fτ (θ)] = Eτ∼p(τ)[Lτ,B(Ukτ,A(θ))]

And we should compute

∇θFτ (θ) = ∇θLτ,B(Ukτ,A(θ)) (3)

≈ ∇θ′Lτ,B(θ′) (4)

to perform gradient descent. In effect, our weight parameter θ are updated for k times on training
set and then updated for once on the test set.

Since Fτ is non-convex with high probability, the algorithm may converge to some local optimal
point which is not good enough. So we decide to run the original algorithm for several times from
different initial points and find the result with lowest loss. We believe this strategy will improve
the accuracy although it takes more time for training.

we are very careful to choose hyperparameters, almost the same with the original setting, and in
tuning the hyperparameters we use the principle of single variable to observe the variations caused
by the changing hyperparameters.

Our algorithm is shown in Algorithm 1 in detail.

For testing, we fine-tune our model with the test data. In other words, we conduct several model
updates on the test set. Then we can test the accuracy of classification.
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Algorithm 1: Improved MAML

Require: p(τ), N, k
1: for try ← 1, · · · , N do
2: randomly initialize θ
3: while not done do
4: Sample task τ ∼ p(τ)
5: A,B ← τ
6: for iteration← 1, · · · , k do
7: Evaluate gradient ∇θLτ,A(θ)
8: θ ← θ − α∇θLτ,A(θ)
9: end for

10: Evaluate gradient ∇θLτ,B(θ)
11: θ ← θ − β∇θLτ,B(θ)
12: end while
13: Keep the result in an array
14: end for
15: Choose the best result from the array

4 Experimental Setting

We plan to evaluate the performance of our algorithm on Omniglot [3], miniImagenet [8] and
tieredImageNet. And we will also evaluate the original MAML on these datasets as our baseline.
In the end, we will compare the accuracy of our method and MAML in 5-way 1-shot, 5-way 5-shot,
20-way 1-shot and 20-way 5-shot classification experiments.

All of our experiment is conducted on GeForce RTX 2080 Ti with CPU being Intel(R) Xeon(R),
using python 3.6 and tensorflow-gpu 1.14.

4.1 Omniglot

we have conducted 20way-1shot omniglot baseline using the command:

python main.py –datasource=omniglot –logdir=logs/omniglot20way1shot/ –metatrain iterations=60000
–meta batch size=16 –update batch size=1 –num classes=20 –update lr=0.1 –stop grad=False

Table 1: 20way-1shot omniglot baseline
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 4.9999% 90.5501% 90.6418% 90.7168% 90.7418% 90.7585%
confidence interval ±0.0000% ±90.5501% ±0.5137% ±0.5102% ±0.5081% ±0.5059%

update update 6 update 7 update 8 update 9 update 10
accuracy 90.7835% 90.8251% 90.8168% 90.8085% 90.8251%

confidence interval ±0.5054% ±0.5052% ±0.5061% ±0.5069% ±0.5073%

Table 2: 20way-1shot omniglot baseline
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 4.8417% 84.7667% 85.841703% 86.55836% 87.891763% 88.850087%
confidence interval ±0.00295 ±0.00609 ±0.00585 ±0.00569 ±0.00569 ±0.0057

update update 6 update 7 update 8 update 9 update 10
accuracy 89.35011% 89.508444% 89.55009% 89.62509% 0.89650095%

confidence interval ±0.00556 ±0.00561 ±0.00559 ±0.00559 ±0.00558

4.2 miniImagenet

we have conducted 5way-1shot miniimagenet baseline using the command:

python main.py –datasource=miniimagenet –logdir=logs/miniimagenet5way1shot/ –metatrain iterations=60000
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–meta batch size=4 –update batch size=1 –update lr=0.01 –num classes=5 –num filters=32 –max pool=True
–stop grad=False

Table 3: 5-1shot miniimagenet baseline
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 0.480000 0.560000 0.623333 0.553333 0.630000 0.570000
update update 6 update 7 update 8 update 9 update 10

accuracy 0.530000 0.560000 0.566667 0.556667 0.536667

we have conducted 5way-1shot miniimagenet using the command:

python main.py –datasource=miniimagenet –logdir=logs/miniimagenet5way1shot/ –metatrain iterations=60000
–meta batch size=4 –update batch size=1 –update lr=0.01 –num classes=5 –num filters=32 –max pool=True
–num updates=3 –attempt rounds=3

Table 4: 5-1shot miniimagenet
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 0.566667 0.486667 0.550000 0.403333 0.580000 0.556667
update update 6 update 7 update 8 update 9 update 10

accuracy 0.586667 0.656667 0.556667 0.566667 0.633333

4.3 tiered Imagenet

we have conducted 5way-1shot tiered imagenet baseline using the command:

python main.py –datasource=tieredimagenet –logdir=logs/tieredimagenet5way1shot/ –metatrain iterations=60000
–meta batch size=4 –update batch size=1 –update lr=0.01 –num classes=5 –num filters=32 –max pool=True
–stop grad=False

Table 5: 5way-1shot tiered imagenet baseline
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 19.19% 22.53% 24.29% 28.46% 29.79% 30.16%
confidence interval ±0.0126 ±0.0103 ±0.0123 ±0.0141 ±0.0146 ±0.0149

update update 6 update 7 update 8 update 9 update 10
accuracy 30.23324% 30.466574% 30.433244% 30.39992% 30.33325%

confidence interval ±0.0148 ±0.0148 ±0.0147 ±0.0148 ±0.0148

we have conducted 5way-1shot tiered imagenet using the command:

python main.py –datasource=tieredimagenet –logdir=logs/tieredimagenet5way1shot/ –metatrain iterations=60000
–meta batch size=4 –update batch size=1 –update lr=0.01 –num classes=5 –num filters=32 –max pool=True
–num updates=3 –attempt rounds=3

Table 6: 5way-1shot tiered imagenet
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 19.999886% 36.3999% 41.599944% 45.233306% 45.56666% 45.566672%
confidence interval ±0.00000009 ±0.0144 ±0.0173 ±0.0185 ±0.0188 ±0.0187

update update 6 update 7 update 8 update 9 update 10
accuracy 45.66667% 45.73334% 45.666662% 45.633325% 45.666662%

confidence interval ±0.0187 ±0.0188 ±0.0187 ±0.0187 ±0.0187

we have conducted 5way-5shot tiered imagenet baseline using the command:

python main.py –datasource=miniimagenet –logdir=logs/miniimagenet5way5shot/ –metatrain iterations=60000
–meta batch size=4 –update batch size=5 –update lr=0.01 –num classes=5 –num filters=32 –max pool=True
–stop grad=False
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Table 7: 5way-5shot tiered imagenet baseline
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 19.78% 58.96% 57.60% 59.76% 60.99% 63.30%
confidence interval ±0.0068 ±0.0093 ±0.0098 ±0.0097 ±0.0099 ±0.0096

update update 6 update 7 update 8 update 9 update 10
accuracy 63.74% 63.84% 63.81% 63.80% 63.79%

confidence interval ±0.0097 ±0.0097 ±0.00976 ±0.00978 ±0.00975

we have conducted 5way-5shot tiered imagenet using the command:

python main.py –datasource=tieredimagenet –logdir=logs/tieredimagenet5way5shot/ –metatrain iterations=60000
–meta batch size=4 –update batch size=5 –update lr=0.01 –num classes=5 –num filters=32 –max pool=True
–num updates=3 –attempt rounds=3

Table 8: 5way-5shot tiered imagenet
update update 0 update 1 update 2 update 3 update 4 update 5

accuracy 19.99% 49.15% 54.89% 60.74% 62.33% 63.34%
confidence interval ±0.000000091 ±0.0087 ±0.009997 ±0.010313 ±0.01039 ±0.01025

update update 6 update 7 update 8 update 9 update 10
accuracy 63.46% 63.58% 63.59% 63.64% 63.71%

confidence interval ±0.0103 ±0.0103 ±0.0102 ±0.0102 ±0.0103

5 Conclusion

Our iMAML algorithm searches several optimal values from different initial points and only keep
the best one to avoid the bad local optimal points. Our algorithm is tested on few-shot classification
datasets, Omniglot, miniImagenet and tieredImagenet, and compared the accuracy of our algorithm
with the baseline of MAML’s in 5-way 1-shot, 5-way 5-shot, 20-way 1-shot and 20-way 5-shot
classification experiments. The results show that our method improves the classification accuracy.
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