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1. Introduction
In 1950, Alan Turing’s seminal paper entitled “Com-

puting Machinery and Intelligence” [1] proposed a famous
question: “Can Machine Think?” He thoughts the ultimate
goal of machines is to be as intelligent as humans. In the
past decades, due to the emergence of powerful computing
devices, large data sets, advanced models and algorithms,
AI speeds up its pace to be like humans and even defeats
humans in many fields, and computer vision is a represen-
tative example.

The most typical problem in computer vision is image
classification. In recent years, deep learning has greatly ad-
vanced the frontiers of action recognition, however, most
methods behind these successes have to operate in fully-
supervised, high data availability regimes. This limits the
applicability of these methods, effectively eliminating ar-
eas where data is fundamentally scarce or impossible to
label, so few-shot learning which aims to computationally
mimic human reasoning and learning from limited data is
proposed.

1.1. Problem Definition

Since FSL is a sub-field of machine learning, before giv-
ing the definition of FSL, let us review how machine learn-
ing is defined in the literature.

Definition 1 Machine Learning (ML) [7]. A computer
program is able to learn from experience E regarding to
some types of task T and performance measure P if its per-
formance can improve with E on T measured by P .

For example, consider the image classification task (T ),
a machine learning program can improve its classification
accuracy(P ) by E , which is obtained by training on many
labeled images(e.g., the ImageNet data set [2]). Another
good example is the recent computer program AlphaGo [3],
which defeated the human champion in the ancient game
of Go (T ). It improves its winning probability (P ) against

competitors through training on a database(E) of about
30 million recorded moves of human experts, and playing
against itself repeatedly. These are summarized in Table 1.

As shown in the above example, typical machine learn-
ing applications require many examples with supervised in-
formation. However, as stated in the introduction, this can
be difficult or even impossible. FSL is a special case of
machine learning, its goal is to obtain good learning per-
formance under the condition of providing limited super-
vised information in the training set Dtrain, which consists
of examples of inputs x′is and their corresponding output
y′is [8],we define FSL in Definition 2.

Definition 2 Few-shot Learning (FSL) is a kind of ma-
chine learning problems (specified by E, T , and P ), where
E contains only a limited number of examples with super-
vised information for the target T .

Existing FSL problems are basicly supervised learning
problems. Specially, few-shot classification learns classi-
fiers given only a limited number of labeled examples of
each class. Example applications contain image classifica-
tion [9], sentiment classification from short text [10] and
object recognition [11]. Formally, few-shot classification
learns a classifier h, which can predict label yi for each input
xi. Commonly, one considers the N -way-K-shot classifi-
cation [9,12], in which Dtrain contains I = KN examples
from N classes each with K examples. Few-shot regres-
sion [12,13] can estimate a regression function h given only
a few input-output example pairs sampled from that func-
tion, where output yi, is the observed value of the dependent
variable y, and yi, is the input which records the observed
value of the independent variable x. In addition to few-shot
supervised learning, another example of FSL is few-shot re-
inforcement learning [14,15], which aims at finding a policy
given only a few tracks consisting of state-action pairs.

We now show three representative scenarios of FSL (Ta-
ble 1):
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Table 1. Examples of Machine Learning Problems Based on Definition 1
task T experience E performance P

image classification [2] large-scale labeled images for each class
classification

accuracy

the ancient game of Go [3]
a database containing around 30 million

recorded moves of human experts and self-play records winning rate

Table 2. Three FSL Examples Based on Definition 2

task T experience E performance Psupervised information prior knowledge

character generation [4]
a few examples of new

character
pre-learning knowledge of

parts and relations
pass rate of visual

Turing test

drug toxicity discovery [5]
new molecule’s limited

assay similar molecules’ assays
classification

accuracy

image classification [6]
a few labeled images for
each class of the target T

raw images of other classer,
or pre-trained models

classification
accuracy

• Acting as a test bed for learning like human. In or-
der to move toward human intelligence, it is important
that computer programs can solve the FSL problem.
A popular task (T ) is to generate samples of a new
character given only a few examples [4]. Inspired by
the way humans learn, the computer programs learn
with the E including both the given examples with su-
pervised information and pre-trained concepts such as
parts and relations as prior knowledge. The generated
characters are evaluated by the pass rate of visual Tur-
ing test (P ), which distinguishes whether the images
are generated by machines or humans. With this prior
knowledge, computer programs can also learn to clas-
sify, parse and generate new handwritten characters
with a few examples like humans.

• Learning for rare cases. When obtaining adequate ex-
amples with supervised information is difficult or even
impossible, FSL is able to learn models for the rare
cases. For example, consider a drug discovery task
(T ), which tries to predict whether a new molecule
has toxic effects [5]. The percentage of molecules cor-
rectly assigned as toxic or non-toxic (P ) improves with
E ,which is obtained by both the new molecule’s lim-
ited assay, and many analogous molecules’ assays as
prior knowledge.

• Reducing data gathering effort and computational
cost. FSL can help lighten the burden of collecting
large amount of examples with supervised informa-
tion. Consider few-shot image classification task (T )
[11]. The image classification accuracy (P ) improves
with the E obtained by some labeled images for each
class of the target T , and the prior knowledge ex-
tracted from the other classes (such as raw images to
co-training). Methods succeed in this task commonly
have better generality. Therefore, they can be easily

applied for tasks of many samples.

Compared to Table 1, Table 1 has one addition column
under “experience E,” which is marked as “prior knowl-
edge.” As E only includes a few examples with supervised
information straightly related to T , it is natural that general
supervised learning methods often fail on FSL problems.
Therefore, FSL methods make the learning of target T fea-
sible by combining the available supervised information in
E with some prior knowledge, which is “any information
the learner has about the unknown function before seeing
the examples” [16].One representative type of FSL meth-
ods is Bayesian learning [4, 11]. It combines the provided
training set Dtrain with some prior probability distribution,
which is available before Dtrain is given [8].

Remark 1 When there is only one example with super-
vised information in E, FSL is called one-shot learning
[9, 11, 17]. When E does not contain any examples with
supervised information for the target T , FSL is a zero-shot
learning problem (ZSL) [18]. As the target class does not
include examples with supervised information, ZSL requires
E to contain information from other modalities (such as at-
tributes, WordNet, and word embeddings used in rare object
recognition tasks), to transfer some supervised information
and make learning possible.

1.2. Relevant Learning Problems

In this part, we discuss some relevant machine learning
problems. The difference and relatedness with respect to
(w.r.t.) FSL are clarified.

• Weakly supervised learning [19] learns from experi-
ence E containing only weak supervision (such as
inexact, incomplete, inaccurate or noisy supervised
information). The most related problem to FSL is
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weakly supervised learning with incomplete supervi-
sion where only a small number of samples have super-
vised information. According to whether the oracle or
human intervention is leveraged, it can be further clas-
sified, which are stated as follows. —Semi-supervised
learning [20], which learns from a small amount of
labeled samples and (ordinarily a large amount of) un-
labeled samples in E, e.g., text and webpage classi-
fication. Positive-unlabeled learning [21] is a special
kind of semi-supervised learning, where only positive
and unlabeled samples are given. For instance, to rec-
ommend friends in scenario of social networks, we
only know the users’ current friends according to they
friend list, while their relationships to other persons are
unknown. —Active learning [22], which extracts in-
formative unlabeled data to query an oracle for output
y. It is usually used for applications in which anno-
tation labels are costly, e.g., pedestrian detection. Ac-
cording to the definition, weakly supervised learning
with incomplete supervision includes only classifica-
tion and regression, while FSL includes reinforcement
learning problems, too. Moreover, weakly supervised
learning with incomplete supervision usually uses un-
labeled data as additional information in E, while FSL
leverages a variety of prior knowledge such as su-
pervised data from other domains, pre-trained models
or modalities and does not restrict to using unlabeled
data. Hence, FSL becomes weakly supervised learning
problem only when the task is classification or regres-
sion and prior knowledge is unlabeled data.

• Imbalanced learning [23] learns from experience E
with a skewed distribution for y. It happens when a few
values of y are rarely taken, as in catastrophe anticipa-
tion applications and fraud detection. It trains and tests
to choose from all possible y’s. On the contrary, FSL
trains and tests for y with some examples, possibly tak-
ing the other y’s as prior knowledge for learning.

• Transfer learning [24] transfers knowledge from the
source domain or task, where training data is abun-
dant, to the target domain or task, where training data
is scarce. It can be utilized in applications such as
WiFi localization across time periods, space and mo-
bile devices, cross-domain recommendation. Domain
adaptation [25] is a kind of transfer learning in which
the source or target tasks are the same but the source
or target domains are different. For instance, in sen-
timent analysis, the target domain data contains cus-
tomer comments on daily goods, while the source do-
main data contains customer comments on movies.
Transfer learning methods are popularly used in FSL
[26–28], where the prior knowledge is transferred from
the source task to the few-shot task.

• Meta-learning [29] improves P of the new task T
by the meta knowledge extracted across tasks by a
meta-learner and the provided data set. In particular,
the meta-learner gradually learns generic information
(meta-knowledge) across tasks, and the learner gener-
alizes the meta-learner for a new task T using task-
specific information. It has been successfully utilized
in problems such as learning optimizers [30, 31], deal-
ing with the cold-start problem in collaborative filter-
ing [32], and guiding policies by natural language 33.
The FSL problem can be overcomed by Meta-learning
methods.

2. Related Work
FSL refers to the problem of learning to solve a task (e.g.,

a classification problem) from only a few training examples.
This problem is extremely challenging in combination with
deep learning as neural networks tend to be highly over-
parameterized and therefore tend to overfit when there is
little data available. Regarding the viewpoint of addressing
FSL, existing algorithms can generally be divided into three
categories.

The first type of methods aims to enhance the distin-
guishability of the feature representation extracted from the
image. To achieve this goal, many methods resort to deep
metric learning and learn deep embedding models, which
will produce discriminative features for any given image
[9, 34–36]. The difference lies in the loss function used.
Other methods following this line focus on improving the
deep metric learning results by learning a separate simi-
larity metric network [37], task dependent adaptive met-
ric [38], patch-wise similarity weighted metric [39], neural
graph based metric [40, 41], etc.

The second type of methods is to eliminate the insuf-
ficiency of labeled data directly through data augmenta-
tion. A popular method is to perform data augmentation
internally by applying transformations to the labeled im-
ages or corresponding feature representations. Using com-
mon transformation techniques, including adding Gaussian
perturbation, color dithering and so on, it makes the im-
age naive distortion particularly risky, because it may harm
the discriminative content in the images. For FSL, this is
not desirable because we can only use a very limited num-
ber of images. The quality control of the synthesis re-
sult of any single image is very important, because oth-
erwise the classifier may be destroyed by low-quality im-
ages. Chen et al. proposes a series of methods to perform
quality-controlled image distortions, such as applying per-
turbations in the semantic feature space [42], shuffling im-
age patches [43], and explicitly learning an image transfor-
mation network [44]. Since feature differences directly af-
fect the classifier, it seems more promising to perform data
augmentation in the feature space. Many methods with this
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idea have been proposed by hallucinating new samples of
novel classes based on seen classes [45], composing syn-
thesized representations [46, 47] and using GAN [48].

The third type of methods is to utilizing meta-learning,
also called learning to learn, which aims at learning from
various learning tasks so as to learn new tasks much faster
than otherwise possible [49]. Following this line, some
methods aim to optimize the meta-learning classification
model so that it can be easily fine-tuned with some labeled
data [45, 50–52]. Other methods use neural networks gen-
eration and train a meta-learning network, which can adap-
tively generate entire or some components of a classifica-
tion neural network from some labeled samples of new cat-
egories [53–56]. The generated neural network is believed
to be able to classify unlabeled samples from new cate-
gories more effectively, because it is generated from labeled
samples and encapsulates discriminative information about
these categories.

In this paper, learning from the previous methods, we
incorporate transfer learning into meta learning, and we use
meta-transfer learning (MTL) to realize FSL for image clas-
sification. MTL combines the advantages of meta learning
and transfer learning. It should be noted that, in this work,
different from the fine-tuning way commonly used in trans-
fer learning to adapt the pre-trained model to new tasks, we
adopt Scaling and Shifting to adapt pretrained model to new
tasks. Compared to fine-tuning, Scaling and Shifting needs
to learning fewer Deep Neural Network (DNN) parameters,
and it also performs better in avoiding overfit. In addi-
tion, Scaling and Shifting keeps those trained DNN weights
unchanged, and thus avoids the problem of “catastrophic
forgetting”. Meanwhile, since curriculum Learning [14]
and hard negative mining [48] both show that by better ar-
ranging training data, faster convergence and stronger per-
formance can be achieved, we use hard task (HT) meta-
batch strategy to offer a more effective learning curriculum.
While training, HT meta-batch will collect previous failure
classes with lowest validation accuracy for further training.
This strategy force meta-learner to grow up with bad data,
which enables the model to achieve higher robustness and
better performance.

3. Baseline for Meta-Transfer Learning
Sun et al. [57] proposes a meta-transfer learning method

for few-shot learning. First, a base-learned feature extrac-
tor is pretrained on a large scale dataset, miniImageNet(64-
class, 600-shot) [58]. Second, a meta-operation Scaling and
Shifting(SS) is introduced to guide the learning of param-
eters in convolution. Third, the structure of Hard task(HT)
meta-batch learns to train the network from easy to hard
mode, similar to curriculum learning [59].

Pretrain on large scale data Sun et al. first randomly
initialize a feature extractor Θ and a classifier θ(the last FC

Figure 1. Scaling and Shifting(SS) for convolution operation. W
and b are kernel and bias in convolution respectively. The Scaling
parameter ΦS1 and Shifting ΦS2 are designed to update the kernel
and bias according to Eq. 3

.

layer) using ResNets structure [60]. The loss function is
designed as cross-entropy loss

L =
1

|D|
∑

(x,y)∈D

L(f[Θ;θ](x), y), (1)

then the optimizer update the gradient by

[Θ, θ] =: [Θ, θ]− α∇LD([Θ, θ]). (2)

Note that during the following meta-training, the extractor
Θ is frozen. The classifier θ is reset due to 5-class for few-
shot learning instead of 64-class.

Meta-transfer learning As shown in Fig. 1, the base-
line proposes a Scaling and Shifting(SS) factor to guide the
network to learn its convolution parameters, which is un-
dated by Eq. 3,

SS(X;W, b; ΦS{1,2}) = (W · ΦS1)X + (b+ ΦS2). (3)

The scaling factor ΦS1
is initialized by ones and the

shifting factor ΦS2 is initialized by zeros. Compared to FT
in MAML [61], SS reduces the number of learning param-
eters and avoid overfitting problem.

Given a meta-transfer learning task Γ, it is split into
training period Γ(tr) and testing period Γ(te). Note that dur-
ing the whole Γ, the pretrained feature extractor Θ is frozen.
For meta-batches in the samples(which contain support sets
for Γ(tr) and query sets for Γ(te)), firstly training loss of
support sets is used to optimize the base-learner classifier
as follows,

θ =: θ − β∇θLΓ(tr)([Θ; θ],ΦS{1,2}), (4)

in which Θ is not updated. The reset classifier θ is also
different from the pretrain one, because few-shot task only
has a few of classes.

Next, it uses support sets to optimize SS parameters to-
gether with the meta-learner classifier,

ΦSi
=: ΦSi

− γ∇ΦSi
LΓ(te)([Θ; θ],ΦS{1,2}), (5)

θ =: θ − γ∇θLΓ(te)([Θ; θ],ΦS{1,2}). (6)
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Note that the learning rate γ in Eq. 5 and Eq. 6 is the
same. The meta-learner classifier θ above in Γ(te) comes
from the last epoch of base-learner with Eq. 4.

Hard task(HT) meta-batch As implied in [61], ran-
dom sampled meta-batch is not helpful for the deep neural
network to converge, causing random difficulties. There-
fore, the baseline introduces a method to schedule task from
easy to hard in meta-transfer learning task.

Detailed for the pipline, given a sampled mate-batch, af-
ter having optimized SS parameters and meta-learner with
Eq. 5 and Eq. 6, samples in query sets Γ(te) are evaluated
using the current learner. Sampling m classes of the lowest
accuracy Accm as failure case Γ(hard), which indicates that
these classes are hard to train. Next, use Γ(hard) to train for
an extra period.

4. Adjustment of loss function
During training, we consider choosing another loss func-

tion. We try to use focal loss [62] as the loss function, which
can solve the problem of imbalance in classification and dif-
ferences in classification difficulty.

In standard cross entropy, we define it as

L(x, class) = − log

(
ex[class]∑
j e
x[j]

)
. (7)

While focal loss is defined as

L(x, class) = −αclass

(
1−

ex class
]∑

j e
x[j]

)γ
log

(
ex clas ]∑
j e
x[j]

)
(8)

= −αclass (1− softmax(x))γ · log (softmax(x)) ,
(9)

where softmax(x) = ex[class]∑
j e

x[j] .
In focal loss, the role of parameter γ is to reduce the

loss of easily classified samples, and focus more on dif-
ficult, misclassified samples. Meanwhile, parameter α is
used to balance the proportion of different samples. In sum-
mary, focal loss makes difficult-to-classify samples more
weighted, and easy-to-classify samples weight less. As to
which samples are difficult to classify and which are easy to
classify, they are determined by the output of the network
and the real deviation. This realizes the network adaptive
adjustment.

In our experiment, we find that focal loss slightly im-
proves the accuracy of pre-trained model. But in order to
compare the performance of MTL with traditional methods,
we still choose cross entropy as loss function.

5. Experiment setting
The datasets, the network architecture and the bench-

marks are stated as follows.

5.1. The datasets

We perform few-shot learning experiments on two
datasets, miniImageNet [9] and Fewshot-CIFAR100
(FC100) [15], and the results are used as benchmarks.
Thereinto, FC100 is more difficult to be classified than
miniImageNet.

• miniImageNet was firstly proposed by Vinyals et al.
[9] for fewshot learning tasks. It is complex owing to
the use of ImageNet dataset. However, it requires less
infrastructure and resource than running on the full Im-
ageNet images [63]. In summary, there are 100 cate-
gories with 600 samples of 84 × 84 color images per
category. The 100 categories are divided into 64, 16,
and 20 categories respectively for sampling tasks for
meta-validation, meta-training and meta-test.

• Fewshot-CIFAR100 (FC100) is derived from CI-
FAR100, which is a popular object classification
dataset [64]. Oreshkin et al. [15] proposed the splits.
It offers a more challenging task with lower image
resolution and more difficult meta-training/test splits
that are divided according to object super-classes. It
contains 100 object categories and each category has
600 samples of 32 × 32 color images. The 100 cate-
gories belong to 20 super-classes. Meta-training data
are from 60 categories belonging to 12 super-classes.
Meta-test and meta-validation sets contain 20 cate-
gories belonging to 4 super-classes, respectively.

5.2. Network architecture

The architecture have two options, i.e., ResNet-12 and
4CONV, which are commonly used in related works [9,15].

• 4CONV includes 4 layers with 3 × 3 convolutions and
32 filters, followed by batch normalization (BN) [65],
a ReLU function, and 2 × 2 max-pooling.

• ResNet-12 contains 4 residual blocks, where each
block has 3 convolution layers with 3 × 3 kernels. At
the end of each residual block, a 2 × 2 max-pooling
layer is utilized. The number of filters starts from
64, then it is doubled every next block. Following 4
blocks, there is a mean-pooling layer to compress the
output feature which is maped to a feature embedding.

The difference when using 4CONV and using ResNet-12 in
our schemes is that ResNet-12 MTL meets the training of
large-scale data, which 4CONV MTL is made a fresh start
due to its bad performance for training of large-scale data.
Hence, we perform the experiments which use ResNet-12
MTL.
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6. Results
The overviews of the results on miniImageNet and

FC100 datasets are presented in Table 3, Table 4 and Ta-
ble 5, respecively. Specifically, iterations for 5-shot and
1-shot are at 14k and 17k for the miniImageNet, respec-
tively. While for the FC100, iterations are all at 1k. Figure 2
shows the different performance between with and without
HT meta-batch in terms of accuracy and converging speed.

6.1. Analysis on using more layers

The baseline uses a 12-layer ResNet as backbone of fea-
ture extractor Θ. Under normal circumstances, a better per-
formance could be achieved when a deeper network archi-
tecture is applied. In order to verify this hypothesis, we
replace the backbone as a 50-layer ResNet. Compared to
ResNet-12, which contains 4 residual blocks and each block
has 3 CONV layers with 3 × 3 kernels, in each block of
ResNet-50, it designs a 1×1 kernel, 3×3 kernels, 1×1 ker-
nel respectively. Other parameter settings are in no change.

However, contrast to our hypothesis, experiments show
that the performance of a deeper network even drops dra-
matically. In detail, as show in Fig. 3-14, when we in-
crease the network depth of the model, the classification ac-
curacy in training set is improved, but in validation set, on
the contrary, the classification accuracy of model is reduced.
This happens in both pretrain stage and meta-transfer learn-
ing. We think the reason is that as the depth of the model
increases, the network structure becomes too complicated,
which leads to overfitting of the model. As a result, we
should control the complexity of the model, which means
ResNet-12 is more appropriate.

6.2. Result of miniImageNet

In Table 4, it can be seen that it tackles the (5-class,
5-shot) tasks with an accuracy of 75.5% that is compara-
ble to the most advanced results, i.e. 76.7%, which is re-
ported by TADAM [37] whose model used 72 additional
full connected layers in the ResNet-12 arch. Besides, the
proposed MTL with SS [·, ·], ResNet-12(pre) and HT meta-
batch meets the best few-shot classification performance
with 61.2% for (5-class, 1-shot).

As for the network arch, it is clearly that models using
ResNet-12 (pre) performs better than those using 4 convo-
lution layers by large margins, e.g., 4 convolution layers
models can only achieve 1-shot result with 50.44% [36],
which is 10.8% lower than our best result.

6.3. Result of Fewshot-CIFAR100

The results of TADAM [37] are given in Table 5. In the
paper, the public code of MAML [61] is utilized to get its re-
sults for this new dataset. Among these methods, it can be
concluded that MTL always performs better than MAML

miniImageNet FC100

1(shot) 5 1 5 10

updata [Θ; θ] 45.3 64.6 38.4 52.6 58.6
updata θ 50.3 66.7 39.3 51.8 61.0

FT θ 55.9 71.4 41.6 54.9 61.1
FT [Θ4; θ] 57.2 71.6 40.9 54.3 61.3
FT [Θ; θ] 58.3 71.6 41.6 54.4 61.2

SS [Θ4; θ] 59.2 73.1 42.4 55.1 61.6
SS [Θ; θ] 60.2 74.3 43.6 55.4 62.4

SS (more layers) 58.7 72.9 42.1 54.6 61.3
Table 3. Classification accuracy (%) using ablative models, on two
datasets. “meta-batch” and “ResNet-12(pre)” are used. Note that
the red font is the result of running our model.

by large margins, i.e., around 7% in all tasks. Besides, it
surpasses TADAM by a larger number of 1.8% for 10-shot,
and with 1.5% and 5% for 5-shot and 1-shot tasks, respec-
tively.

6.4. Performance of MTL

6.4.1 MTL vs. No meta-learning

The results of No meta-learning at the top are shown in Ta-
ble 3. Among these, their method meets significantly bet-
ter performance even without HT meta-batch. For exam-
ple, the largest margins are 8.6% for 5-shot and 10.2% for
1-shot on miniImageNet. It validates the effectiveness of
their meta-learning method for addressing few-shot learn-
ing problems. Between two No meta-learning approaches,
it can be seen that updating both classifier θ and feature
extractor Θ is worse than updating θ only, e.g., about 5%
reduction on miniImageNet of 1-shot. It is because that in
few-shot settings, there are often too many parameters to
optimize but with too little data. Therefore, it supports mo-
tivation to learn only θ during base-learning stage.

6.4.2 Performance effects of MTL components

MTL(full components), SS [Θ, θ], ResNet-12(pre) and HT
meta-batch, achieves the best performances for all few-shot
settings on both datasets, which can be seen in Table 4
and Table 5. It can be concluded that their large-scale net-
work training on deep CNN significantly improves the per-
formance of few-shot learning. It is a gain of importance
brought by the transfer learning in MTL scheme. It is worth
to mention that the gain on FC100 is not as great as for mini-
ImageNet: only 1.7%, 1.0% and 4.0%. It may be because
that FC100 tasks for meta-test and meta-train are clearly
split according to super-classes. Therefore, the data do-
main gap is larger than that for miniImageNet, which makes
transfer more difficult.
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Figure 2. (a)(b) show the results of 1-shot and 5-shot on miniImageNet; (c)(d)(e) show the results of 1-shot, 5-shot and 10-shot on FC100.

Figure 3. Pre-train training accuracy. Figure 4. Pre-train training loss. Figure 5. Pre-train validating accuracy.

Figure 6. Pre-train validating loss. Figure 7. Oneshot training accuracy. Figure 8. Oneshot training loss.

Figure 9. Oneshot validating accuracy. Figure 10. Oneshot validating loss. Figure 11. Fiveshot training accuracy.

Figure 12. Fiveshot training loss. Figure 13. Fiveshot validating accuracy. Figure 14. Fiveshot validating loss.

ResNet-12(pre) and HT meta-batch in our method can be
expanded to other meta-learning models. Besides, MAML
4CONV with HT meta-batch gains averagely 1% on two
datasets. When changing 4CONV by deep ResNet-12 (pre),
there are significant improvements, e.g., 9% and 10% on
miniImageNet. Different from MAML variants, their MTL
results are always higher, e.g., 2.5% 3.3% on FC-100.
There may be a doubt that MAML fine-tuning (FT) seems

overfit to few-shot data. In the middle block of Table 3, it
shows the ablation training of freezing low-level pre-trained
layers and meta-learn only the high-level layers (e.g., the
4-th residual block of ResNet-12) by the FT operations of
MAML. These can only yield worse performances than SS.
In addition, SS∗ always outperforms FT ∗.
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Few-shot learning method Feature extractor 1-shot 5-shot

Adv. ResNet WRN-40(pre) 55.2 69.6Data augmentation Delta-encoder VGG-16(pre) 58.7 73.6

Matching Nets 4 CONV 43.44± 0.77 55.31± 0.73
ProtoNets 4 CONV 49.42± 0.78 68.20± 0.66Metric learning

CompareNets 4 CONV 50.44± 0.82 65.32± 0.70

Meta Networks 5 CONV 49.21± 0.96 -
SNAIL ResNet-12(pre) 55.71± 0.99 68.88± 0.92Memory network

TADAM ResNet-12(pre) 58.50± 0.30 76.70± 0.30

MAML 4 CONV 48.70± 1.75 63.11± 0.92
Meta-LSTM 4 CONV 43.56± 0.84 60.60± 0.71

Hierachical Bayes 4 CONV 49.40± 1.83 -
Bilevel Programming ResNet-12 50.54± 0.85 64.53± 0.68

MetaGAN ResNet-12 52.71± 0.64 68.63± 0.67

Gradient descent

adaResNet ResNet-12 56.88± 0.62 71.94± 0.57

MAMAL,HT TF [Θ, θ], HT-batch 4 CONV 49.10± 1.90 64.10± 0.90
MAML deep, HT TF [Θ, θ], HT-batch ResNet-12(pre) 59.10± 1.90 73.10± 0.90

SS [Θ, θ], meta-batch ResNet-12(pre) 60.20± 1.80 74.30± 0.90MTL SS [Θ, θ], HT-batch ResNet-12(pre) 61.20± 0.80 75.50± 0.80

Table 4. The 5-way with 1-shot, 5-shot and 10-shot classification accuracy (%) on miniImageNet dataset.

Few-shot learning method 1-shot 5-shot 10-shot

Gradient descent MAML 38.1± 1.7 50.4± 1.0 56.2± 0.8

Memory network TADAM 40.1± 0.4 56.1± 0.4 61.6± 0.5

MAML,HT TF [Θ, θ], HT-batch 39.9± 1.8 51.7± 0.9 57.2± 0.8

SS [Θ, θ], meta-batch 43.6± 1.8 55.4± 0.9 62.4± 0.8MTL SS [Θ, θ], HT-batch 45.1± 1.8 57.6± 0.9 63.4± 0.8

MTL (more layers) SS [Θ, θ], meta-batch 42.1 54.6 61.3
Table 5. The 5-way with 1-shot, 5-shot and 10-shot classification accuracy (%) on Fewshot-CIFAR100 (FC100) dataset.

6.4.3 Speed of convergence of MTL

MAML [61] utilized 240k tasks to meet the best perfor-
mance on miniImageNet. Notably, MTL methods utilized
only 8k tasks, which can be seen in Figure 2(a)(b) (note that
each iteration contains 2 tasks). It is more clearly for FC100
on which MTL methods need at most 2k tasks, which can be
seen in Figure 2(c)(d)(e). There are two reasons for this. On
the one hand, MTL starts from the pre-trained ResNet-12.
On the other hand, SS (in MTL) needs to learn only < 2
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parameters of the FT (in MAML) when applying ResNet-
12.

6.4.4 Speed of convergence of HT meta-batch

It can be seen in Figure 2 that: 1) MTL with HT meta-
batch always outperforms than MTL with the conventional
metabatch [61], as for the accuracy in all settings; and 2)

it is obvious that MTL with HT meta-batch meets top per-
formances early, after aroud 1k iterations for 10-shot, 1k
for 5-shot and 2k for 1-shot, on the FC-100, which is more
challenging.

7. Conclusions
In this paper, we increased the number of layers in the

frame of the network to better combat overfitting. However,
the results indicated that it will degrade the performance of
MTL trained with HT meta-batch.

Fortunately, compared to the traditional method, which
do not utilizing MTL trained with HT Meta-batch, the per-
formance is still improved.
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