
===
Final Report——Few-shot Generation

CS7335-033-M01-Statistical Learning and Inference, Li Niu, Autumn 2020.

∗ Name: Jiadong Chen Student ID: 120033910065 Email: 2235372520@qq.com
∗ Name: Haoyi Hu Student ID: 120033910071 Email: 565287421@qq.com
∗ Name:Runfeng Chen Student ID:120033910034 Email: 874487625@qq.com

Contents
1 Introduction 2

2 Related Work 2
2.1 Meta Learning . 2

2.1.1 Overview . 2
2.1.2 Formalizing Meta-learning from Different Perspectives 2

2.2 Few-shot Learning . 4
2.2.1 Overview . 4
2.2.2 Different Methods for Few-Shot Learning . 4

2.3 Advanced Models for Few-Shot Generation . 5
2.3.1 Data Augmentation Generative Adversarial Networks(DAGAN) 5
2.3.2 Fusing-and-Filling GAN for Few-shot Image Generation(F2GAN) 6

3 Method 6
3.1 Similarity DAGAN . 6
3.2 Class-aware Data Augmentation Generative Adversarial Networks 7
3.3 Distribution influenced GAN . 9

4 Experimental Setting 10
4.1 Datasets and Implentation Details . 10
4.2 Generated Images . 10

1

1 Introduction
Although the current generation model performs well, it often requires a large amount of training
data, and its performance will decline rapidly when the amount of data is small. However, for
emerging categories or long-tail categories, it is very difficult and expensive to obtain data, so we
need to expand the data. Then, new technology named as few-shot generation is discovered.The
applications of few-shot image generation are broad. It can benefit a wide range of downstream
category-aware tasks like few-shot classification.

There has been a lot of few-shot image generation models which perform well, such as Mathc-
ingGAN, F2GAN, DAGAN e.t.c. Here, we made some modifications to DAGAN in order to get a
more diverse picture.

2 Related Work
2.1 Meta Learning
2.1.1 Overview

Meta-learning is most commonly understood as learning to learn, which refers to the process of
improving a learning algorithm over multiple learning episodes. In contrast, conventional ML
improves model predictions over multiple data instances. During base learning, an inner (or
lower/base) learning algorithm solves a task such as image classification, defined by a dataset and
objective. During meta-learning, an outer (or upper/meta) algorithm updates the inner learning
algorithm such that the model it learns improves an outer objective. For instance this objective could
be generalization performance or learning speed of the inner algorithm. Learning episodes of the
base task, namely (base algorithm, trained model, performance) tuples, can be seen as providing
the instances needed by the outer algorithm to learn the base learning algorithm. As defined
above, many conventional algorithms such as random search of hyper-parameters by cross-validation
could fall within the definition of meta-learning. The salient characteristic of contemporary neural-
network metalearning is an explicitly defined meta-level objective, and end to-end optimization of
the inner algorithm with respect to this objective.

2.1.2 Formalizing Meta-learning from Different Perspectives

Conventional Machine Learning In conventional supervised machine learning, we are given a
training dataset D = {(x1, y1) , . . . , (xN , yN)} , such as (input image, output label) pairs. We can
train a predictive model ŷ = fθ(x) parameterized by θ, by solving:

θ∗ = argmin
θ

L(D; θ, ω) (1)

where L is a loss function that measures the error between true labels and those predicted by fθ(·).
The conditioning on ω denotes the dependence of this solution on assumptions about ‘how to learn’,
such as the choice of optimizer for θ or function class for f . Generalization is then measured by
evaluating a number of test points with known labels. The conventional assumption is that this
optimization is performed from scratch for every problem D; and that ω is pre-specified. However,
the specification of ω can drastically affect performance measures like accuracy or data efficiency.
Meta-learning seeks to improve these measures by learning the learning algorithm itself, rather than
assuming it is prespecified and fixed. This is often achieved by revisiting the first assumption above,
and learning from a distribution of tasks rather than from scratch.

Meta-Learning: Task-Distribution View A common view of meta-learning is to learn a
general purpose learning algorithm that can generalize across tasks, and ideally enable each new

2

task to be learned better than the last. We can evaluate the performance of ω over a distribution of
tasks p(T). Here we loosely define a task to be a dataset and loss function T = {D,L}. Learning
how to learn thus becomes

min
ω

E
T ∼p(T)

L(D;ω) (2)

where L(D;ω) measures the performance of a model trained using ω on dataset D. ’How to learn’,
i.e. ω, is often referred to as across-task knowledge or meta-knowledge.

To solve this problem in practice, we often assume access to a set of source tasks sampled
from p(T). Formally, we denote the set of M source tasks used in the meta-training stage as
Dsource =

{(
Dtrain

source,Dval
source

)(i)}M

i=1
where each task has both training and validation data. Often,

the source train and validation datasets are respectively called support and query sets. The meta-
training step of ’learning how to learn’ can be written as:

ω∗ = argmax
ω

log p (ω | Dsource) (3)

Now we denote the set of Q target tasks used in the meta-testing stage as Dtarget =
{(

Dtrain
target,Dtest

target
)(i)}Q

i=1
where each task has both training and test data. In the metatesting stage we use the learned meta-
knowledge ω∗ to train the base model on each previously unseen target task i :

θ∗(i) = argmax
θ

log p
(
θ | ω∗,Dtrain(i)

target

)
(4)

In contrast to conventional learning in Eq. 1 , learning on the training set of a target task i
now benefits from meta-knowledge ω∗ about the algorithm to use. This could be an estimate of
the initial parameters, or an entire learning model or optimization strategy. We can evaluate the
accuracy of our meta-learner by the performance of θ∗(i) on the test split of each target task Dtest(i)

target
This setup leads to analogies of conventional under-fitting and over-fitting: meta-under fitting and
meta-over-fitting. In particular, meta-over fitting is an issue whereby the meta knowledge learned
on the source tasks does not generalize to the target tasks. It is relatively common, especially in
the case where only a small number of source tasks are available. It can be seen as learning an
inductive bias ω that constrains the hypothesis space of θ too tightly around solutions to the source
tasks.

Meta-Learning: Bi-level Optimization View The previous discussion outlines the com-
mon flow of meta-learning in a multiple task scenario, but does not specify how to solve the meta-
training step in Eq. 3. This is commonly done by casting the meta-training step as a bi-level
optimization problem. While this picture is arguably only accurate for the optimizer-based meth-
ods, it is helpful to visualize the mechanics of meta-learning more generally. Bi-level optimization
refers to a hierarchical optimization problem, where one optimization contains another optimization
as a constraint. Using this notation, meta-training can be formalised as follows:

ω∗ = argmin
ω

M∑
i=1

Lmeta (θ∗(i)(ω), ω,Dval(i)
source

)
(5)

s.t. θ∗(i)(ω) = argmin
θ

Ltask (θ, ω,Dtrain (i)
source

)
(6)

where Lmeta and Ltank refer to the outer and inner objectives respectively, such as cross entropy
in the case of few-shot classification. Note the leader-follower asymmetry between the outer and
inner levels: the inner level optimization Eq. 6 is conditional on the learning strategy ω defined
by the outer level, but it cannot change ω during its training. Here ω could indicate an initial
condition in non-convex optimization, a hyper-parameter such as regularization strength or even a
parameterization of the loss function to optimize Ltank.

3

2.2 Few-shot Learning
2.2.1 Overview

In order to learn from a limited number of examples with supervised information, a new machine
learning paradigm called Few-Shot Learning (FSL) is proposed. A typical example is character
generation, in which computer programs are asked to parse and generate new handwritten characters
given a few examples. To handle this task, one can decompose the characters into smaller parts
transferable across characters, and then aggregate these smaller components into new characters.
This is a way of learning like human. Naturally, FSL can also advance robotics, which develops
machines that can replicate human actions. Examples include one-shot imitation, multi-armed
bandits, visual navigation, and continuous control.

Formally, Few-Shot Learning (FSL) is a type of machine learning problems (specified by from
experience E with respect to some classes of task T and performance measure P), where E contains
only a limited number of examples with supervised information for the target T.

2.2.2 Different Methods for Few-Shot Learning

In order to approximate the ground-truth hypothesis ĥ, the model has to determine a hypothesis
space H containing a family of hypotheses h ’s, such that the distance between the optimal h∗ ∈ H
and ĥ is small.

Given the few-shot dataset Dtrain with limited samples, one can choose a small H with only
simple models (such as linear classifiers). However, real-world problems are typically complicated,
and cannot be well represented by an hypothesis h from a small H. Therefore, a large enough H is
preferred in FSL, which makes standard machine learning models infeasible. FSL methods manage
to learn by constraining H to a smaller hypothesis space H̃ via prior knowledge in E. The empirical
risk minimizer is then more reliable, and the risk of overfitting is reduced.

Multitask Learning In the presence of multiple related tasks, multitask learning learns these
tasks simultaneously by exploiting both task-generic and task-specific information. Hence, they can
be naturally used for FSL. Here, we present some instantiations of using multitask learning in FSL.

We are given C related tasks T1, . . . , TC , in which some of them have very few samples while
some have a larger number of samples. Each task Tc has a data set Dc = {Dc

train , D
c
test }, in which

Dc
train is the training set and Dc

test is the test set. Among these C tasks, we regard the few-shot
tasks as target tasks, and the rest as source tasks. Multitask learning learns from Dc

train ’s to
obtain θc for each Tc. As these tasks are jointly learned, the parameter θc of hc learned for task Tc

is constrained by the other tasks. According to how the task parameters are constrained, we can
divide methods in this strategy as parameter sharing; and parameter tying.

Embedding Learning Embedding learning embeds each sample xi ∈ X ⊆ Rd to a lower-
dimensional zi ∈ Z ⊆ Rm, such that similar samples are close together while dissimilar samples
can be more easily differentiated. In this lower-dimensional Z, one can then construct a smaller
hypothesis space H which subsequently requires fewer training samples. The embedding function
is mainly learned from prior knowledge, and can additionally use task-specific information from
Dtrain.

Embedding learning has the following key components: (i) a function f which embeds test
sample xtest ∈ Dtest to Z, (ii) a function g which embeds training sample xi ∈ Dtrain to Z, and
(iii) a similarity function s(·, ·) which measures the similarity between f (xtest) and g (xi) in Z. The
test sample xtest is assigned to the class of xi, whose embedding g (xi) is most similar to f (xtest)
in Z according to s. Although one can use a common embedding function for both xi and xtest ,
using two separate embedding functions may obtain better accuracy.

According to whether the parameters of embedding functions f and g vary across tasks, we clas-
sify these FSL methods as using a task-specific embedding model; task-invariant (i.e., general) em-

4

bedding model; and hybrid embedding model, which encodes both task-specific and task-invariant
information.

Learning with External Memory Learning with external memory extracts knowledge from
Dtrain, and stores it in an external memory (Figure 9). Each new sample xtest is then represented by
a weighted average of contents extracted from the memory. This limits xtest to be represented by
contents in the memory, and thus essentially reduces the size of H.

A key-value memory is usually used in FSL. Let the memory be M ∈ Rb×m, with each of its b
memory slots M(i) ∈ Rm consisting of a key-value pair M(i) = (Mkey (i),Mvalue (i)) . A test sample
xtest is first embedded by an embedding function f. However, unlike embedding methods, f (xtest)
is not used directly as the representation of xtest. Instead, it is only used to query for the most
similar memory slots, based on the similarity s (f (xtest) ,Mkey (i)) between f (xtest) and each key
Mkey(i). The values of the most similar memory slots (Mvalue(i)

′s) are extracted and combined to
form the representation of xtest. This is then used as input to a simple classifier (such as a softmax
function) to make prediction. As manipulating M is expensive, M usually has a small size. When
M is not full, new samples can be written to vacant memory slots. When M is full, one has to
decide which memory slots to be replaced.

Generative Modeling Generative modeling methods estimate the probability distribution
p(x) from the observed xi ’s with the help of prior knowledge. Estimation of p(x) usually involves
estimations of p(x | y) and p(y). Methods in this class can deal with many tasks, such as generation
recognition, reconstruction, and image flipping.

In generative modeling, the observed x is assumed to be drawn from some distribution p(x; θ)
parameterized by θ. Usually, there exists a latent variable z ∼ p(z; γ), so that x ∼

∫
p(x |

z; θ)p(z; γ)dz. The prior distribution p(z; γ), which is learned from other data sets, brings in prior
knowledge that is vital to FSL. By combining the provided training set Dtrain with this p(z; γ), the
resultant posterior probability distribution is constrained. In other words, H is constrained to a
much smaller H̃.

2.3 Advanced Models for Few-Shot Generation
2.3.1 Data Augmentation Generative Adversarial Networks(DAGAN)

DAGAN takes advantages of both Data Augmentation and Generative Adversarial Networks to
finish the Few-shot generation work.

Data Augmentation is routinely used in classification problems. Often it is non-trivial to
encode known invariances in a model. It can be easier to encode those invariances in the data
instead by generating additional data items through transformations from existing data items. For
example the labels of handwritten characters should be invariant to small shifts in location, small
rotations or shears, changes in intensity, changes in stroke thickness, changes in size etc. Almost
all ncases of data augmentation are from a priori known invariance.

Generative Adversarial Networks(GAN) is a class of machine learning frameworks with
two neural networks contest with each other in a game (in the form of a zero-sum game, where
one agent’s gain is another agent’s loss). Given a training set, this technique learns to generate
new data with the same statistics as the training set. For example, a GAN trained on photographs
can generate new photographs that look at least superficially authentic to human observers, hav-
ing many realistic characteristics. Though originally proposed as a form of generative model for
unsupervised learning, GANs have also proven useful for semi-supervised learning, fully supervised
learning, and reinforcement learning. The core idea of a GANs is based on the ”indirect” training
through the discriminator, which itself is also being updated dynamically. This basically means
that the generator is not trained to minimize the distance to a specific image, but rather to fool
the discriminator. This enables the model to learn in an unsupervised manner.

5

As shown in Fig.??, the DAGAN is composed of two parts. Left part, the generator network
is composed of an encoder taking an input image (from class c), projecting it down to a lower
dimensional manifold (bottleneck). A random vector (zi) is transformed and concatenated with the
bottleneck vector; these are both passed to the decoder network which generates an augmentation
image. the right part, the adversarial discriminator network is trained to discriminate between the
samples from the real distribution (other real images from the same class) and the fake distribution
(images generative from the generator network). Adversarial training leads the network to generate
new images from an old one that appear to be within the same class (whatever that class is), but
look different enough to be a different sample.

Data augmentation is a widely applicable approach to improving performance in low-data set-
ting, and a DAGAN is a flexible model to automatic learn to augment data. However beyond that,
the authors demonstrate that DAGAN improve performance of classifiers even after standard data-
augmentation. Furthermore by meta-learning the best choice of augmentation in a one-shot setting
it leads to better performance than other state of the art meta learning methods. The generality
of data augmentation across all models and methods means that a DAGAN could be a valuable
addition to any low data setting.

2.3.2 Fusing-and-Filling GAN for Few-shot Image Generation(F2GAN)

Fusing-and-Filling GAN for Few-shot Image Generation(F2GAN) is one of the state-of-the-art
modles to generate realistic and diverse images for a new category with only a few images. In
F2GAN, the authors designed a fusion generator that fuses high-level features of conditional images
with random interpolation coefficients, and then fills low-level details with a non-local attention
fusion module to generate a new image.In addition, the discriminator ensures the diversity of gen-
erated images by looking for pattern loss and interpolating regression loss.

3 Method
3.1 Similarity DAGAN
Data Augmentation Generative Adversarial Networks(DAGAN) has a good idea that design a
unique discriminator that takes

1. some input data point xi and a second data point from the same class: xj such that ti = tj

2. some input data point xi and the output of the current generator xg which takes xi as an
input.

The critic tries to discriminate the generated points (b) from the real points (a). The generator is
trained to minimize this discriminative capability as measured by the Wasserstein distance.

The importance of providing the original x to the discriminator should be emphasised. They
want to ensure the generator is capable of generating different data that is related to, but different
from, the current data point. By providing information about the current data point to the dis-
criminator they prevent the GAN from simply autoencoding the current data point. At the same
time we do not provide class information, so it has to learn to generalise in ways that are consistent
across all classes.

However, the lack of diversity still exists in the image generated by DAGAN because it just
let the generated image be as likely as the second data point xj. So, we add a new parameter c
to control the similarity between the generated points (b) from the real points (a). Then we can
generate the image between xi and xj.

6

Figure 1: Similarity DAGAN

3.2 Class-aware Data Augmentation Generative Adversarial Networks
Data Augmentation Generative Adversarial Networks(DAGAN) has a intuitive idea that use an
Gaussian noise to make the generated images diverse, the related formula is described as:

z = Ñ(0, I)
r = g(xtrue)

xgen = f(z, r)
(7)

where xtrue is a given image, xgen are the vectors being generated (that, in distribution, should match
the data D), z are the latent Gaussian variables that provide the variation in what is generated,
g is the Encoder(implemented via a neural network), and f is the Decoder(also implemented via a
neural network).

While DAGAN performs well on some datasets, it takes a lot of time to train the Encoder and
Decoder on some large-scale data sets, so we develop a model, called Class-aware Data Augmentation
Generative Adversarial Networks(ClassDAGAN), in order to make the networks converge faster,
whose structure is shown in Fig.5.

The related formula can be described as:

c = e(C),C = {xi|xi has the same class lable with xture}
z = Ñ(0, I)
r = g(xtrue)

xgen = f(z, r, c)

(8)

7

Class c

True Image xi True Image xj

zi (Gussian)

Linear
Projection Encoder

Projected zi ri Low Dim Repr.

Decoder
(Generator)

Gen Image xg

ci Class Repr.

Class Embedding
(pretrained)

Fake Distri. (xi, xj) Fake Distri. (xi, xj)

Discriminator

Real/Fake

Generator Network Discriminator Network

Figure 2: The architecture of Class-aware Data Augmentation Generative Adversarial Networks

8

of which e is an pre-trained embedding model to embed the class into a vector c, and the other
notations hold the same definitions with original DAGAN.

In practice� we design different embedding methods, such as Auto-Encoder, and Attention-
based Matching Network. For Auto-Encoder, we use some source domains consisting of data Di ={
xi
1, x

i
2, · · · , xi

nDi

}
(1 ≤ i ≤ N) to train an Auto-Encoder, and for an image x, the embedded vecotr

c is the output of this Auto-Encoder with input x = 1
nDi

∑nDi

i=1 x
i
i.

The data augmentation model can be learnt in the source domain using an adversarial approach.
Consider a source domain consisting of data D = {x1, x2, . . . , xND

} and corresponding target values
{t1, t2, . . . , tND

} . We use an improved WGAN, critic that either takes
1. some input data point xi and a second data point from the same class: xj such that ti = tj

2. some input data point xi and the output of the current generator xg which takes xi as an
input.

The critic tries to discriminate the generated points (b) from the real points (a). The generator
is trained to minimize this discriminative capability as measured by the Wasserstein distance.

The importance of providing the original x to the discriminator should be emphasised. We want
to ensure the generator is capable of generating different data that is related to, but different from,
the current data point. By providing information about the current data point to the discriminator
we prevent the GAN from simply autoencoding the current data point. At the same time we do
not provide class information, so it has to learn to generalise in ways that are consistent across all
classes.

3.3 Distribution influenced GAN
Generative Adversarial Methods are the most widely used methods for learning to generate exam-
ples from density.Usually they learn a generator and a discriminator by minimizing a distribution
measure between the generated image and the true image. And the generative model is learnt by a
GAN network.

Usually, the data that generator need have two parts, noise and true image. Noise is usually a
Gaussian noise, it is used to make the image generated more variant.

z = Ñ(0, I) (9)

z is the Gaussian noise, mean is 0 and variance is 1.

l = L(z) (10)

L is a linear function, and l are the vectors generated. l will be injected into the auto encoder to
provide the variation.

But how to control the variation is a question. Sometimes the variation is too large and the
change in generated images are too big that it is very hard for the generator to generate good images.
If the variation is too small, then the generator cannot generate enough different pictures.So we
want to control the variant of the images.

Suppose there are N images in one batch. First we calculate the distribution on each pixel and
get P.P is a distribution matrix with dimension h∗w. Each element represents a distribution in this
pixel. Then we generate N random Gaussian matrix and calculate the distribution on each pixel
just like P and get Q. Then we enlarge the interval of the minimum and maximum value in Q into
[0,256) so that it is consist with P. Then quantum each value and let them be one integer between
zero and 256. To calculate the distance between two distributions, we use KL divergence.

DKL(p||q) =
N∑
i=1

pilog
pi
qi

(11)

9

P represents the true distribution of images in one batch and Q is noises. The more similar the
two distribution are, the smaller the value of KL divergence is. If P and Q are totally equal, the
KL divergence D is 0. To transform the distance into a coefficient, we need a function that can
projection the interval (0,+∞) into (0,1). There are many function can achieve this, we choose

f(x) = e−x (12)

e = f(D) (13)
D is the KL divergence and e is the coefficient. We use α as the hyperparameter.It is set by human
representing the intent that people are willing to see different pictures. We use the mean of the N
Gaussian vectors as the injected noise.

q =
N∑
i=1

Qi (14)

At last, the vector to be injected is:
z = q ∗max(α, e) (15)

If you want to see very different pictures(but at the same time the pictures maybe nonsense) you
can set α high. If you want to generate only very similar but meaningful pictures, you can set α
low.

4 Experimental Setting
4.1 Datasets and Implentation Details
Although we designed three methods, we experimented with only the first method SDAGAN due
to time and computational resources. We tested the SDAGAN augmentation on Omniglot dataset.

For classifier networks, all data for each character (handwritten or person) was further split into
2 test cases (for all datasets), 3 validation cases and a varying number of training cases depending
on the experiment. Classifier training was done on the training cases for all examples in all domains,
with hyperparameter choice made on the validation cases. Finally test performance was reported
only on the test cases for the target domain set. Case splits were randomized across each test run.

For one-shot networks, DAGAN training was done on the source domain, and the meta learning
done on the source domain, and validated on the validation domain. Results were presented on the
target domain data. Again in the target domain a varying number of training cases were provided
and results were presented on the test cases (2 cases for each target domain class in all datasets).

The Omniglot data (Lake et al., 2015) was split into source domain and target domain similarly
to the split in (Vinyals et al., 2016). The order of the classes was shuffled such that the source and
target domains contain diverse samples (i.e. from various alphabets). The first 1200 were used as a
source domain set, 1201-1412 as a validation domain set and 1412-1623 as a target domain test set.

4.2 Generated Images
These are the generated images using our model. We selected some well recognized pictures and
put it below.

10

Figure 3: The letter ”y” generated.

11

Figure 4: The letter ”x” generated.

12

Figure 5: The letter ”F” generated.

13

	Introduction
	Related Work
	Meta Learning
	Overview
	Formalizing Meta-learning from Different Perspectives

	Few-shot Learning
	Overview
	Different Methods for Few-Shot Learning

	Advanced Models for Few-Shot Generation
	Data Augmentation Generative Adversarial Networks(DAGAN)
	Fusing-and-Filling GAN for Few-shot Image Generation(F2GAN)

	Method
	Similarity DAGAN
	Class-aware Data Augmentation Generative Adversarial Networks
	Distribution influenced GAN

	Experimental Setting
	 Datasets and Implentation Details
	Generated Images

