Image Classification with One-shot Learning

Nguyen Nicolas and Md Sakib Rahman
School of Electronics, Information € Electrical Engineering
Shanghai Jiao Tong University
(Dated: December 18, 2020)

[Deep Learning algorithms are quite familiar and efficient to classify images when a large amount
of data is provided. But when it comes to learn from a small amount of data, these kinds of
algorithms aren’t enough efficient. Training model with small labelled data may create over-fitting
issues. Few-shot learning (FSL) algorithms are proposed to tackle this problem. During this project,
we focused on a particular type of FSL algorithm, called One-shot Learning algorithms. Particularly,
we will rely on the Siamese neural network as a CNN.]

I. INTRODUCTION

As a human being, when new objects are presented to
us, we quickly pickup patterns, shapes and other main
characteristics of these objects. Then when we are pre-
sented with same kind of objects later, we could recognize
them without any difficulty. It means that for human, we
only need a few examples of each objects to classify them
into categories or classes.

A. image classification with One-shot Learning

Deep learning have made major advances in many
fields such as image classification [1], speech recognition
[2] and language learning [3] but the main issue of this
kind of algorithms is that they require a large amount
of data. Moreover, these kind of algorithms are trained
to accomplish a specific task. In the case of standard
image classification, for every input image of different
classes, the algorithm generates different numbers repre-
senting the probability of the image belonging to each
class. Gathering and labelling thousands of images is
very difficult and time consuming. On the other hand,
if we want to introduce a new class or example we have
to retrain the model again. Recently, there have been
many research on algorithms that could bypass this issue
by requiring a few examples of each classes. These kind
of algorithms are applicable in many fields that couldn’t
collect a large amount of data:

e Face recognition : Collecting data of people is an
ethical issue of private life. Thus, One Shot Learn-
ing is adapted to this kind of issue.

e Signature verification : It is also impossible to pro-
vide a large amount of data for Signature verifi-
cation. FSL algorithms could be useful for banks
in banknotes verification or any kind of document
verification.

B. The Dataset

In this project we used the Omniglot [4] dataset (figure
1) which contains 1623 hand drown characters from 50
alphabets. But for every characters (which is seen as one
class) there are just 20 examples.

Ve ARG I vy)
QARFH P& I
BATBR Jedy N
WODF g 6L)

Figure 1. Examples of Ominglot characters

II. RELATED WORKS

It seems that research on One-shot Learning is less
developed that other kinds of Few-shot Learning methods
(e.g. meta learning algorithms). The first papers about
one-shot learning algorithms have been published by L3
Fei-Fei et al. Lake et al. addressed the issue of One-shot
Learning from the point of view of cognitive sciences,
by implementing an algorithm for character recognition
called Hierarchical Bayesian Program Learning (HBPL)
[5]. We especially exploited Koch et al. with their subject
concerning one-shot image recognition utilizing a Siamese
Neural networks [6]. Vinyals et al. developed a model of
one-shot learning algorithm using Matching Networks as
a CNN. This algorithm relies on a principle of transfer
learning [7]. Sounak et al. have used one shot learning
to build an offline signature verification system [8] which
is totally writer independent .

Lastly, the Ominglot dataset was provided Lake et al.
and it makes an ideal dataset for testing small-scale one-
shot classification, as we will discuss below.

PILX,)

fuclidean
Distance
1ya=valls

2

Figure 2. Siamese Network

III. METHOD

Let consider a small labelled training set S, which has
N examples, and each vectors has the same dimension
with a distinct label y.

S = {($1,y1)7~'7(9€N7yN)} (1)

The problem is to classify Z, i.e. predict which y € §
is the same as ¢

In our project, we restrict the issue of image classifica-
tion to character classification. But the method can
be applied to any sort of images.

A. Model Architecture

If we use a CNN for a classical deep learning algorithm,
it will obviously overfit with our data given the amount
of data we exploit for one shot learning.

The term Siamese means twins. The two CNN shown
above are not different networks but these are not copies
of the same Network: They share the same parameters.
The principle of this method is to give to the neural net
2 images and train it to guess whether these 2 images
belongs to the same class or not. This means that the
Siamese Networks outputs the probability that the 2 im-
ages share the same class(figure 2).

The two input images are passed trough the CNN to
generate a same length feature vector. Then, due to a
metric function (which we will explicit later) and a
sigmoid function we can compare these two vectors to
see if the 2 images belong to the same class or not.

Let consider z; and x2 the 2 images in our dataset,

and let consider "z; and zo belongs to the same class”
as the notation x1 o z».
The output of this Network, and a sigmoid function gives
it between 0 and 1, as a probability. By convention, we
refer to 1 when the images belong to the same class, and
0 in the other case. So, our model learns from a similarity
function.

TestImage Support st

3@!\’("?.9{'

24 Jmo
§eNd o

HQ\,D;\@

HT e o

Figure 3. Test image and Support Set

d(xz1,x2) = degree of dif ference between images (2)

We are going to train our model batch by batch and
each minibach have i indexes the ‘" minibatch. When
d(x;”,25”) = 1, we can assume that z; and x form
a same class and d(xgl),xgl)) = 0 then we can assume
images are not in same class. So the loss function will be
following form:

L(z1,xa,t) = t.log(p(xy o x2))
+ (1 —1t).log(1 — p(z1 0 z2)) (3)
+ AfJwl]2

The SiameseNet classifies the test image as whatever
image in the support set it thinks is most similar to the
test image. We can query the model network using x,
x. as our input range from C = 1 to C?. So, we will
calculate the maximum similarity.

C(z,S) = argmar.P(iox.) z.€S (4)

B. Nearest Neighbor Model

A simple way of doing classification is by the K-
Nearest-Neighbour Method, but there is only one exam-
ple per class so it is 1 — NN. By defining as C our
classifier :

C (&) = argminges||t — x.|| (5)

In an N-way one shot learning, we compare a test image
with N different images and select that image which has
highest similarity with the test image as the prediction.

C. Random Model

The random model aims to verify that our model is at
least a better model that a model which makes random
predictions.

D. Mapping the problem to binary classification
task

This problem can be mapped into a supervised learning
task where out dataset contains pairs of (z;,y;) where x;

Labels (vi) Xi Labels (vi)

T/ = qH &
AU
T o || A -

A

4

Figure 4. Comparison of images

is the input and y; is the output. We will generate pairs
randomly from all alphabets in the training data.

Thus we need to create pairs of images along with the
target variable to be fed as input to the Siamese Network

(figure 4).

E. Another approach : Triplet Loss
1. Loss function

It is possible to use another fundamental approach by
exploiting an other metric function, as described in [9].
In fact, given that we want to compare 2 images and asso-
ciate a small distance embedding for same-class images
and a large distance embedding for images that don’t
have belong to the same class, we can define them with
the following triplet:

e A starting picture : the anchor

e A picture from the same class as the anchor : the
positive

e A picture from a different class to the anchor : The
negative

Anchor Anchor

learning

Figure 5. Triplet Loss

Let’s denote these 3 images respectively by A, P, N:

dist(A, P) < dist(A,N) i.e. dist(A, P) —dist(A,N) <0

But in order to get a better result we have to imple-
ment a margin. In fact, without a certain margin,
the network would learn to simple solutions. This
can be seen as a hyper parameter. So let’s intro-
duce a margin such that:

dist(A, P) — dist(A, N) + margin < 0

Then the new loss function can be defined as:

L = max(dist(A, P) — dist(A, N) + margin,0)

2. Triplet Batch

In order to construct a triplets for the training set
every sample of our batch will contain 3 images of
the dataset : A, P and N.

It is possible to take our triplet randomly. But we
need to implement our Siamese Net in Order to
clearly differentiate our classes. Based on how we
defined our loss function, we can define 3 categories
of triplets :

— Easy Triplets : Triplets for which £ = 0:
d(A, P) + margin < d(A,N). So, the loss is
0.

— Hard Triplets : triplets where the nega-
tive is closer to the anchor than the positive:
d(A,N) < d(A, P)

— Semi-hard Triplets : triplets where the neg-
ative is not closer to the anchor than the
positive, but which sill have positive loss:
d(A, P) < d(A,N) < d(A, P) + margin

According to these given information, We have
trained our Neural Network model with the library
Keras and with a pre-existing code (see the refer-
ences).

IV. EXPERIMENTS AND RESULTS

In this section we describe the result of our experi-
ments. We used the library Keras on Python to imple-
ment our algorithm. The Keras library in Python makes
it much easier to build a CNN.

A. Validation of the model

For every pair of input images, our model generates
a similarity score between 0 and 1. But this score is
relative, meaning that this score doesn’t give a precise

Similarity Score

s1

s
g <= -
o=
= M | G

Figure 6. Example of a 4-way one shot learning

= FrEzo g
EF‘“I'__S" A TWHF
o% A a- Y EYT

= R R i)
T &) ERERE

Figure 7. Repeating the procedure for different N

estimation of whether our model is precise or not.
A more precise way to assert the precision of our model
is the N-way one shot Learning

Here, the same character is compared to other 4 char-
acters which are different. Consider that the score-
comparison results are s1, s2, 53 and s4 (figure 5). If our
model is well-trained, we must have s; as the number
which is the nearest from 1 because s; refers to the most
similar pair of character (here it is the only similar pair
above the 3 others).
Thus, if s1 is considered as the maximum score, we con-
sider the pair 1 as a ’correct prediction’ and the others
as 'incorrect prediction’. We repeat this k times and the
percentage of correct predictions is :

100 * Necorrect

k

percentage of correct prediction =

Now we can do the same for different N : Smaller values of
N will lead to more correct predictions and large values
of N(figure 6) will lead to less correct predictions when
repeated multiples times.

B. 1-Nearest Neighbor model

Here, the inputs image are represented as matrices : a
flatten function transforms the matrices as vectors. Let 2
image be represented (after b passed through the CNN)
as 2 vectors A and B such as:

ap bl
as b2

ap bp.

And employing the Ly distance gives :

distance(A,B) = ||A— B|| =

Thus, in N-way one Shot learning, we compare the Lo
distances of the test images with all the images of the
support set. Then we identify the character for which we
got the minimum L, distance.Similarly to N way one shot
learning, we repeat this for multiple trials and compute
the average prediction score over all the trials.

C. Evaluation and metrics

During training test, we evaluate how far the distance
embedding from each class are from each another. But
we must have to evaluate the whole dataset but there
is just to check that the network is converging correctly
for all the classes.

Omiglot One-Shot Learning Performance of a Siamese Network
100

80
g —— Siamese({val set)
m 60
5 Siamese({train set)
E —— Nearest neighbour
£ 40 — Random guessing

20

25 50 75 100 125 150 175
Number of possible classes in one-shot tasks

Figure 8. Comparison of the different methods

FZ T
= P nEF o
€ o= A
W ﬂ-e‘.@‘_f}

Figure 9. Generated output

Image Verification, being the task you’re given two im-
ages and you have to tell if they are of the same per-

son/class or category. Since in context of the problem
we have in hand of image verification, classifying similar
images of characters as same is the main problem we need
to solve, therefore choosing accuracy is the right metric
we should use to validate the performance of our model
on new unseen data (Figure 8). Here model is train with
20,0000 iterations, one iteration being one full pass over
the data set.

D. Observations

We tested the N-way testing for different values of N :
1,3,5....,19. For each N-way that we tested, 50 trials were
performed and then we computed the average accuracy
over these 50 trials.

The figure presents the comparison between the 4 models.

Ev;(l}uating embeddings distance from each other after 0 iterations

25
20

15

Distance

10
0s |
T

00 T T T T T T
0 1 2 3 4 5

Classes

==
L

fz‘%l—"ﬁ.—"'—‘.._.l
L
rRdT =8 45
6 8 9

7
Figure 10. Evaluation Metrics using triplet loss

We observe that the Siamese Model performs much
than the Nearest neighbor model. However, there is some
gap between the results on the training set and the val-
idation set which indicate that the model is over fitting.
This may be occur due to learning decay for each layer(as
it is being mentioned in the original paper). On the other
hand the number of iterations during training time can
make this overfit issue. Choosing accuracy is the right
metric we should use to validate the performance of our
model on new unseen data.

In the figure (Figure 10), the distances between

classes take values between 0.5 and 1.5 approximately,
indicating that their respective embedding are better
produced by the network.

V. CONCLUSION

In this paper, we have presented a learning method
called one-shot learning using Siamese network. The
method is outlined new results comparing the perfor-
mance of the difference methods and comparing existing
state-to-art on Omniglot dataset. We try to demonstrate
how well our model perform on that dataset with differ-
ent methods. Although our model still there have some
outfitting issues due to learning decay for each layer in
the model. We feel this will help other to improve the
existing methods to keep improving in the future work.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2012.

[2] L. Deng, G. Hinton, and B. Kingsbury, “New types of
deep neural network learning for speech recognition and
related applications: an overview,” in 2013 IEEFE interna-
tional conference on acoustics, speech and signal process-
ing, 2013.

[3] A. Hassan and A. Mahmood, “Convolutional recurrent

deep learning model for sentence classification,” IEEFE Ac-

cess, 2018.

B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum,

“One shot learning of simple visual concepts,” in Proceed-

ings of the annual meeting of the cognitive science society,

2011.

[6] L. Fe-Fei et al., “A bayesian approach to unsupervised
one-shot learning of object categories,” in Proceedings
Ninth IEEE International Conference on Computer Vi-
ston, pp. 1134-1141, IEEE, 2003.

[6] G. R. Koch, “Siamese neural networks for one-shot image
recognition,” in ICML deep learning workshop, 2015.

[7] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and
D. Wierstra, “Matching networks for one shot learning,”
2017.

[8] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Llados, and
U. Pal, “Signet: Convolutional siamese network for writer
independent offline signature verification,” 2017.

[9] X. Dong and J. Shen, “Triplet loss in siamese network for
object tracking,” in Proceedings of the Furopean Confer-
ence on Computer Vision (ECCYV), September 2018.

[4

	Image Classification with One-shot Learning
	Abstract
	Introduction
	image classification with One-shot Learning
	The Dataset

	Related Works
	Method
	Model Architecture
	Nearest Neighbor Model
	Random Model
	Mapping the problem to binary classification task
	Another approach : Triplet Loss
	Loss function
	Triplet Batch

	Experiments and results
	Validation of the model
	1-Nearest Neighbor model
	Evaluation and metrics
	Observations

	Conclusion
	References

