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1. INTRODUCTION

Humans can learn new concepts (object classes) from very
few samples efficiently. For example, children who have seen
cats and dogs only a few times can quickly distinguish them.
However, well-trained machine learning models, especially
those with deep structures and huge amounts of parameters,
require a large number of samples to achieve the similar per-
formance of humans. This motivates the setting of few-shot
learning whose goal is to classify or generate new data hav-
ing seen only a few training examples. In practice, few-shot
learning is useful when training examples are hard to find, or
when the cost of labelling data is high.

Deep learning has made unprecedented achievements in
areas such as vision, language and speech, but is still suffer-
ing from requiring large datasets. In low-data regime, deep
nerual networks usually overfit on the training set and pro-
ducing poor generalization on the test set. Although, tech-
niques have been developed to alleviate the overfitting prob-
lem, such as regularization loss, batch normalization, batch
renormalization and dropout. They work poorly in few-shot
setting, since the flexibility of the networks is too high and
the training set is too small.

In few-shot setting, we need an approach to learn knowl-
edge that is shared by all classes, or at least a collection of
classes, so that the approach can still work well when encoun-
tering new classes. It is also possible to generate more data
from existing data without changing class labels, by applying
various transformations to the original dataset. These trans-
formations, such as random translations, rotations and flips
as well as addition of Gaussian noise, are valid for data from
all classes. There are two properties for this kind of trans-
formations: (a) preserving the class labels, (b) applicable to
all classes. We define the transformation that satisfy these
two properties as class-agnostic transformation. However, the
transformations mentioned above only take a very small part
of the class-invariant transformation space. Hence, in this pa-
per, we propose Class-Agnostic Transformation Generative
Adversarial Network (CAT-GAN), which can apply a large
variety of class-agnostic transformations to the input image
leveraging the powerful expressive ability of DNNs. To im-
prove the diversity of the model, we introduce a new recon-
struction loss.

2. RELATED WORK

2.1. Data Augmentation

Data Augmentation is widely used in classification tasks. It is
difficult to encode known invariances into model parameters
[1]. However, it can be easier to encode those invariances in
the data by generating new samples through transformations
from existing samples. For example the labels of handwrit-
ten characters should be invariant to small shifts in location,
small rotations, changes in intensity, changes in stroke thick-
ness, changes in size etc. Almost all kinds of data augmenta-
tion are based on priori knowledge. Among papers that try to
learn data augmentation strategies, the work of [2] is worthy
of note, where the authors learn augmentation strategies on a
class by class basis. Nevertheless, their method cannot work
in few-shot setting, since unseen classes are encountered.

2.2. Generative Adversarial Networks (GAN)

GANs are an exciting recent innovation in machine learning
[3, 4]. GANs are generative models: they create new data in-
stances that resemble your training data. For example, GANs
can create images that look like photographs of human faces,
even though the faces don’t belong to any real person. Recent
improvements in the optimization process have reduced some
of the failure modes of the GAN learning process such as [5].
To enable stable training, an alternative to clipping weights
is provided: penalize the norm of gradient of the critic with
respect to its input [6].

2.3. few-shot learning

Few-shot learning is a challenging problem and is receiving
significant attention in recent years. In [7], modern deep
learning architecture have been used for one-shot conditional
generation. They use a sequential generative model to achieve
one-shot generation. The inference process uses an attention
module to have a Variational Auto Encoder attend to a section
of the generated image sequentially. It generates binary im-
ages of size 28 × 28 and 52 × 52 on the Omniglot dataset with
one-shot learning. A different approach uses matching net-
works to achieve few-shot image generation [8]. In essence,
matching networks are memory-assisted networks that lever-
age an external memory by employing an attention module



to quickly learn new concepts. It assumes that the concepts
stored are somewhat similar to the new concepts.

3. OUR METHODS

Before introducing our method, we first describe some nota-
tions. For ease of representation, in the rest of this paper, we
use a bold (resp., plain) letter to denote a non-scalar (resp.,
scalar), and use xT to denote the transpose of a vector x. We
use D = {(Ii, yi)|

NI
i=1} to denote our image dataset, in which

Ii is the i-th image with one-hot label vector yi and NI is the
number of images. We use Dc = {(Ici , c)|

Nc
I

i=1} to denote the
samples labeled with c in the image dataset, in which Ici is the
i-th image in the class c and N c

I is the number of class c in
the dataset.

Intuitively, if we have a transform function for data, which
can keep its class label invariant, we can use this transforma-
tion function to generate additional data, especially for those
few-shot data. Though we don’t know what transform func-
tion can meet our expectation, we can attempt to learn a valid
transformation function from those related problems that we
can apply to our setting. Based on this idea, we take Gener-
ative Adversarial Network(GAN) as the basic framework and
propose Class-agnostic Transformation Generative Adversar-
ial Network(CAT-GAN), a novel method to generate new data
from limited data.

As is shown in Figure 1, our CAT-GAN consists of four
components: CNN encoder GE to project the original image
and latent code into a vector, CNN decoder GD to decode the
vector back into an image, discriminatorD to distinguish fake
images from real ones, and regressor R to recover the latent
code from the generated image. Then we will introduce how
our model works in detail.

Given an image Ici in Dc, we take Icj in the same Dc

randomly, which means Ici and Icj belong to the same class.
We sample a latent code zi from unit Gaussian distribution
N (0, 1), which aims to get diverse results for our model.
Then we aggregate Ici and zi with a certain method and put
them through GE to get a feature vector fci , which can be
written as:

fci = GE(Ici , zi) (1)

After obtaining feature vector fci , which containing the infor-
mation of the input image Ici and the latent code z, we useGD

to decode the feature vector fci and generate a new image Î
c

i ,
which can be expressed as:

Î
c

i = GD(fci ) (2)

The generated image Î
c

i contain the information of z, and we
hope we can recover z from Î

c

i . To achieve this, we design
a regressor R to reconstruct z. And then we use L2 loss to
encourage a bijection between the reconstructed code ẑ and

latent code z, which can alleviate mode collapse problem and
help produce more diverse images. These can be written as:

ẑi = R(Î
c

i ) (3)

LR =
1

NI

∑
c

NI
c∑

i=1

‖zi − ẑi‖22 (4)

Then we use discriminator D to distinguish generated images
from the real ones by maximizing the following adversarial
loss:

LD =
1

NI

∑
c

NI
c∑

i=1

[log(D(Ici , I
c
j)) + log(1−D(Î

c

i , I
c
j))]

(5)

At last, we combine two losses and train our model. The full
loss function of our CAT-GAN can be written as:

Lall = min
GE ,GD,R

max
D

λRLR + λDLD (6)

in which λR and λD are hyper-parameters. The objective
in Equatioin (6) can be optimized by updating {GE , GD, R}
and {D} in an alternating manner.

In the testing stage, we ignore R and D and only reserve
GE and GD. For an input image, we sample several latent
codes from unit Gaussian distribution N (0, 1) and then pass
the image and the latent codes through GE and GD, which
can lead to several generated images whose class label is the
same as the input image.

4. EXPERIMENTS

4.1. Dataset

4.1.1. Omniglot dataset

The Omniglot data[9, 10] set is designed for developing more
human-like learning algorithms. It contains 1623 different
handwritten characters from 50 different alphabets. Each of
the 1623 characters was drawn online via Amazon’s Mechan-
ical Turk by 20 different people. Each image is paired with
stroke data, a sequences of [x,y,t] coordinates with time (t)
in milliseconds. We will conduct three tasks to evaluate one-
shot generalization as in [9] to test the generalization capa-
bility of our algorithm. The three tasks are: 1)unconditional
(free) generation: unconditional refers to generating sam-
ples unconditionally from the dataset, 2) generation of novel
variations of a given exemplar: At test time, the model is
presented with a character of a type it has never seen before
(was not part of its training set), and asked to generate novel
variations of this character.The context x′ is the image that
we wish the model to generate new exemplars of. To ex-
pose the boundaries of our approach, we test this under weak
and strong one-shot generalization tests. and 3) generation



Fig. 1. Our CAT-GAN architecture. GE takes an image Ici and a latent code z as input and output an encoded feature fci . GD

takes fci as input and generates an image Î
c

i . R takes Î
c

i as input and reconstruct the latent code z. D takes Ici , Icj and Î
c

i as input
and discriminate the real image from fake one.

of representative samples from a novel alphabet This task
conditions the model on any number between 1 to 10 sam-
ples of a novel alphabet and asks the model to generate new
characters consistent with this novel alphabet. We will test on
the hardest condition form of this test, using only 1 context
image.

The Omniglot data was resized to 32×32 and 64 × 64. The
training classes where all 1623 characters in the dataset minus
20 randomly sampled character classes for the test set.

4.1.2. VGG-Face dataset

The VGG-Face dataset [11] contains 982,803 images from
2,622 celebrities spanning a wide range of ethnicities and
professions. The Images were collected from Google Im-
age Search with large variations in pose, age, lighting, and
background. The dataset is approximately gender-balanced,
achieved by selecting the same candidates in the data collec-
tion stage. The number of images for each identity ranges
from 80 to 843, with an average of 374 images per identity.
VGG-Face provides a large-scale training dataset of depth,
which has a limited number of subjects but many images for
each subject. The depth of the dataset enforces the trained

model to address a wide range of intraclass variations, such
as lighting, age, and pose. However, like other large-scale
datasets, Vgg-Face is constructed by scraping websites like
Google Images and celebrities on formal occasions: smiling,
makeup, young, and beautiful. They are largely different from
databases captured in daily life. The biases can be attributed
to many exogenous factors in data collection, such as cam-
eras, lightings, preferences over certain types of backgrounds,
or annotator tendencies. Dataset biases adversely affect cross-
dataset generalization.

4.2. Baselines

Data augmentation generative adversarial networks (DA-
GAN)

DAGAN learns how to generate a synthetic image using
a lower-dimensional representation of a real image. Rather
than the generator taking as input a class and noise vector, in
the DAGAN framework, the generator is essentially an au-
toencoder: it takes an existing image, encodes it, adds noise,
and decodes it. So, the decoder learns a large family of trans-
formations for data augmentation.

The DAGAN discriminator distinguishes between an im-



age and a transformed version on the one hand, and a pair of
images from the same class on the other hand. So, the dis-
criminator incentivizes the decoder to learn transformations
which do not change the class, but which are non-trivial in
the sense that the transformed image is not too similar to the
original image. However, a key assumption of the DAGAN
is that the same transformations apply to all classes — this is
reasonable in the computer vision context, but less so in fraud
or anomaly detection.

4.3. Evaluation metrics

We use classifier accuracy to evaluate our method by compar-
ing the results of using different image augmentation meth-
ods. For classification on unseen categories, we randomly
select a few training images per unseen category while the re-
maining images in each unseen category are test images. Note
that we have training and testing phases for the classification
task, which are different from the training and testing phases
of our CAT-GAN. We use the images of seen categories, and
then train the classifier using the training images of unseen
categories. Then, the trained classifier is used to predict the
test images of unseen categories.

On the other hand, we use the generated images to aug-
ment the training set of unseen categories. For each few-shot
generation method, we generate some images for each unseen
category based on the training set of unseen categories. Then,
we train the classifier on the augmented training set (includ-
ing both original training set and generated images) and apply
the trained classifier to the test set of unseen categories.

4.4. Implementation details

The structure of our generator G is similar to DAGAN [12],
which is a combination of a UNet and ResNet. G has a
total of 8 blocks, with each block having 4 convolutional
layers (with leaky rectified linear (relu) activation function
and batch renormalization (batchrenorm) [13]) followed by
one downscaling or upscaling layer. Downscaling layers (in
blocks 1-4) are convolutions with stride 2 followed by leaky
relu, batch normalisation and dropout. Upscaling layers were
stride 1/2 replicators, followed by a convolution, leaky relu,
batch renormalization and dropout. For Omniglot experi-
ments, all layers had 64 filters. For the VGG-Faces the first
2 blocks of the encoder and the last 2 blocks of the decoder
had 64 filters and the last 2 blocks of the encoder and the first
2 blocks of the decoder 128 filters. In addition each block
has skip connections. As with a standard ResNet, a strided
1x1 convolution also passes information between blocks, by-
passing the between block non-linearity to help gradient flow.
Finally skip connections were introduced between equivalent
sized filters at each end of the network (as with UNet).

For our discriminator D, we use a DenseNet [14] dis-
criminator, using layer normalization instead of batch normal-
ization; the latter will break the assumptions of the WGAN

objective function. The DenseNet is composed of 4 Dense
Blocks and 4 Transition Layers, as they are defined in [14].
We use a growth rate of k = 64 and each Dense Block had
4 convolutional layers within it. We also used dropout at the
last convolutional layer of each Dense Block as we find that
this improves sample quality.

For classification experiments we use a DenseNet classi-
fier composed of 4 Dense Blocks and 4 Transition Layers with
a k = 64, each Dense Block has 3 convolutional layers within
it. The classifiers are a total of 17 layers (i.e. 16 layers and 1
softmax layer). Furthermore we apply a dropout of 0.5 on the
last convolutional layer in each Dense Block.

For hyper-parameter, we set the dimension of noise z to
100. And we set λR = 0.1 and λD = 1 in equation (6).

Fig. 2. Analyses of hyper-parameters λR. The default val-
ues are indicated by vertical dashed lines. We use Omniglot
dataset on the setting of 10-samples.

4.5. Experiment results

To evaluate the quality of our generated images, we use gen-
erated images to help classification tasks. For classification
on unseen categories, following MatchingGAN [15], we ran-
domly select a few (e.g., 5, 10, 15) training images per unseen
category while the remaining images in each unseen category
are test images. Note that we have training and testing phases
for the classification task, which are different from the train-
ing and testing phases of our CAT-GAN. We train the classi-
fier using the training images of unseen categories. Finally,
the trained classifier is used to predict the test images of un-
seen categories. This setting is referred to as “Standard” in
Table 1.

Then, we use the generated images to augment the train-
ing set of unseen categories. For each few-shot generation
method, we generate 512 images for each unseen category
based on the training set of unseen categories. Then, we
train the classifier on the augmented training set (including



Dataset Omniglot VGGFace

Number of samples 5-samples 10-samples 15-samples 5-samples 10-samples 15-samples

Standard 65.12 80.79 82.13 8.41 19.56 37.45
DAGAN [12] 71.68 73.75 74.51 17.96 32.63 42.17
CAT-GAN 73.46 75.20 76.11 20.01 34.10 43.57

Table 1. Accuracies(%) of different methods on two datasets Omniglot and VGGFace. The best results are denoted in boldface.

both original training set and generated images) and apply the
trained classifier to the test set of unseen categories.

The experiment results are shown in Table 1. From the
table, we can see that with the increase of number of sam-
ples, the accuracy increases. The result of DAGAN [12] is
better that standard. And our CAT-GAN shows the best per-
formance.

4.6. Hyper-parameter Analyses

We attempt to study the affect of hyper-parameters on the set-
ting of Omniglot dataset and 10-samples. We vary λR in Eqn.
(6) in the range of [0.01, 100]. The results are plotted in the
Fig. 2, which demonstrates that our method is robust with λR
in a reasonable range.

4.7. Visualization of generated images

In this section, we show the generated images in Fig. 3. The
first column shows the input images. For each input image,
we show three images generated by DAGAN (shown in the
next three columns in Fig. 3) and three images generated by
CAT-GAN (shown in the last three columns in Fig. 3). The
first three input images is in VGGFace dataset and the rest
three input images is in Omniglot dataset. We can see that the
performance of our CAT-GAN is better than DAGAN.

5. CONCLUSION

In this paper, we propose a GAN-based augmentation method
CAT-GAN, which is trained on images from seen categories
and applies class-agnostic transformations to each image
from unseen categories. Moreover, we design a novel latent
code reconstruction loss to improve the diversity of generated
images. Finally, we demonstrate that CAT-GAN can generate
realistic and diverse images, and also improve performance of
classifiers in low-data setting on two datasets.
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