
CS245 Project 1: Dimensionality Reduction
1st Kaipeng Zeng

Shanghai Jiao Tong University, Shanghai, China
518030910374

zengkaipeng@sjtu.edu.cn

1st Yuxuan Xiong
Shanghai Jiao Tong University, Shanghai, China

518030910370
xiongyx@sjtu.edu.cn

Abstract—In this paper, we have tried three types of data
dimension reduction methods, including feature selection, feature
projection and feature learning, to reduce the dimensionality
of pre-extracted deep learning features for AwA2 dataset. In
order to measure the performance between each method, we
train SVMs based on low-dimensional features produced by each
method and compare the accuracy of each SVM. Our experiment
shows that t-distributed stochastic neighbor embedding (t-SNE)
method with dimensionality n = 3 and LDA preprocessing
achieves the best accuracy, while Linear Discriminant Analysis
(LDA) method with dimensionality n = 50 has the best time and
space properties.

Index Terms—dimensionality reduction, feature selection, fea-
ture projection, feature learning, SVM

I. INTRODUCTION

Dimensionality reduction is a very common and important
method in data mining. Reducing feature dimensionalities of
the data, we can not only save a lot of memory space and
training time, but can also alleviate the problem of over-
fitting to some extent. Therefore dimensionality reduction has
been widely used in (the pre-processing of) various kinds of
machine learning algorithms.

There are many kinds of dimensionality reduction methods,
which can be divided into three categories in total, including
feature selection, feature projection and feature learning. Each
type of dimensionality reduction methods have their own
strengths and weaknesses, which means that they are suitable
for different application scenarios.

In this paper, we focus on the task of image classification.
We will implement several types of dimensionality reduction
methods on our own and use them to reduce the dimensionality
of the pre-extracted deep learning features for AwA2 dataset.
After that, we will train SVMs based on those low-dimensional
features and compare the performance (classification accuracy)
of each SVM in order to rank each method.

The structure of this paper will be organized as follows:
Firstly, we will briefly introduce the mathematical principle
and implementation of each dimensionality reduction algo-
rithms in section II. What’s next, we will conduct experiments
to test the performance of each algorithm in section III.
Conclusion of the while paper will be presented in section
IV.

II. METHODS

A. Feature Selection

Feature selection has the methods with the simplest idea
among all. The core of the method is how to pick the most
useful dimensions out of other dimensions.

Two basic method of feature selection are introduced in
the classes, namely forward search and backward search. In
forward search, we start from an empty set and add the useful
dimensions into the set greedily while in the backward search,
we remove dimensions from the full set. However, the two
method might have the following two shortcomings:
• The algorithm might not work if we want to reduce our

features to specific dimensions.
• The greedy algorithm might leads to a local optimum for

feature selection.
• Though forward selection do not have recursion, some-

times the criterion of the greedy algorithm can still be
time-consuming, while modifying criterion might lead to
a worse result.

Thus, in this paper, we mainly focus on two kinds of fea-
ture selection method, namely Greedy Forward Selection and
Variance-based Selection.

1) Faster-Greedy Forward Selection: The algorithm comes
from a very simple idea: start from the empty set and pick
out a random dimension from the feature and verify whether
adding to to the set will improve the valid accuracy by a
five-fold validation. However, according to the experiment, the
five-fold validation is quite time-consuming and it take days
to go through all 2048 dimensions. However, as it’s shown in
figure 1, when the number of selected dimensions is relatively
low, the more dimension you choose, the higher tendency it
will be for you to get a high validation accuracy. With this
tendency, we can replace the original five-fold cross validation
with a simpler criterion, which is using 20% random data to
validate and other 80% to train. If adding a dimension will
improve the performance, this dimension will be preserved in
the set. On the contrary, if adding a dimension will lead to
a worse performance, we will preserve this dimension with a
specific probability p to erase the influence of randomness of
new criterion and preserve the probability that this dimension
can improve performance together with some unexplored
dimensions.

2) Variance-based Selection: This algorithm is inspired by
the principle of PCA. The dimension with higher variance

Fig. 1. Validation Accuracy under different numbers of dimensions. The
dimensions are randomly selected.

might contribute more to the classification. Thus we choose
the top k dimensions with largest variance and use them to
compose the new features.

B. Feature Projection

Feature projection is a type of dimension reduction meth-
ods which project the original high-dimensional features into
a low-dimensional space. The key of this kind of method is
to find a set of base vectors of the new feature space. By
elaborately selecting the base vectors of the low-dimensional
space, feature projection methods can achieve a pretty well
performance on refining original features. In this paper, we
mainly focus on three kinds of feature projection method,
namely Principal Component Analysis (PCA), Linear Discrim-
inant Analysis (LDA) and Auto-Encoder.

1) Principal Component Analysis: Principal Component
Analysis (PCA) is one of the most popular dimesionality
reduction methods. The intuition of PCA is to choose base
vectors on which direction the data have maximum variance.

Mathematically, given a set of decentralized data, we want
to find a unit vector v to maximize the variance of the data,
i.e.

max
v

1

n

∑
i

(vTxi)
2

s.t. ||v|| = 1

or equivalently

max
v
vTXXT v

s.t. vT v = 1

The Lagrange form of above objective is:

L(v) = vTXXT v − λ(vT v − 1)

According to KKT conditions, we have

∂L
∂v

= 2XXT v − 2λv = 0

So
XXT v = λv (1)

v is an eigenvector of the matrix XXT . Bring equation (1)
back to the original objective, we have

max
v
λvT v

s.t. vT v = 1

i.e.

maxλ

So v is the the eigenvector corresponding to the maximum
eigenvalue of the matrix XXT .

In the actual code implementation, we just need to find
the maximum d eigenvalues {λ1, λ2, · · · , λd} and their corre-
sponding (unit) eigenvectors {v1, v2, · · · , vd} of matrix XXT .
Then we can reduce the dimensionality of the original features
by projecting them into the sapce formed by base vectors
{v1, v2, · · · , vd}.

2) Linear Discriminant Analysis: Linear Discriminative
Analysis (LDA) is another type of feature projection method to
reduce feature’s dimensionality. Unlike PCA which finds the
component axis that maximize the variance, LDA is a label-
aware method which intends to find the component axis that
maximize the class separation.

More concretely, given a set of data which can be divided
into two categories, LDA want to find a base vector which
can maximize the variance between different categories while
minimize the variance within the same category. This intuition
leads to the definition of the Fisher function

J(v) =
(vTµ1 − vTµ2)2

σ2
1 + σ2

2

=
(vTµ1 − vTµ2)2∑C1

i (vTx1,i − vTµ1)2 +
∑C2

i (vTx2,i − vTµ2)2

=
vT (µ1 − µ2)(µ1 − µ2)T v

vT (C1Σ1 + C2Σ2)v

Denote {
SB = (µ1 − µ2)(µ1 − µ2)T

SW = C1Σ1 + C2Σ2

The objective of LDA is to

max
v

J(v) ≡ max
v

vTSBv

vTSW v

or equivalently

max
v
vTSBv

s.t. vTSW v = 1

The Lagrange multiplier of above objective is

L(v) = vTSBv − λ(vTSW v − 1)

According to KKT conditions, we have

∂L
∂v

= 2SBv − 2λSW v = 0

So
SBv = λSW v (2)

S−1
w SBv = λv (3)

According to equation (3), v is an eigenvector of matrix
S−1
W SB . Bring equation (2) back to the original objective, we

have

max
v
λvTSW v

s.t. vTSW v = 1

i.e.

maxλ

So same as PCA, v is the the eigenvector corresponding to
the maximum eigenvalue of the matrix S−1

W SB .
In the actual code implementation, we just need to find

the maximum d eigenvalues {λ1, λ2, · · · , λd} and their cor-
responding (unit) eigenvectors {v1, v2, · · · , vd} of matrix
S−1
W SB . Then we can reduce the dimensionality of the original

features by projecting them into the space formed by base
vectors {v1, v2, · · · , vd}.

Note that when there are more than two categories in the
dataset, we can extend the expression of SB and SW as

SB =
∑
i

Ci(µi − µ)T (µi − µ)

SW =
∑
i

Ci∑
j=1

(xi,j − µi)T (xi,j − µi)

3) Auto-Encoder: Auto-Encoder is a kind of special sym-
metric neural network, which learns to generate a output as
close to its input as possible. The network mainly consists
of two parts, namely the encoder and decoder. The encoder
transform the input into a feature with lower dimension, which
is a hidden layer in the neural network in fact. And the decoder
reconstruct the feature from the code. Or in mathematics for
a input X ∈ X ⊂ Rn, if we want to map the feature into
c ∈ C ⊂ Rm, with Φ as encoder an Ψ as decoder, we will
have

Φ : X → C
Ψ : C → Rn

(4)

And the objective function of auto-encoder will be

min
Ψ,Φ
‖X − X̂‖

2

s.t. X̂ = Ψ(Φ(X))
(5)

For any input X , c = Φ(X) has lower dimension, which
means it can be regarded as a kind of low-dimension rep-
resentation of X .

C. Feature Learning

Unlike previous two types of dimensionality reduction
methods, feature learning usually cannot be written as a
linear projection from a high-dimensional space into a low-
dimensional space. In fact, feature learning is a type of method
which learns some ”inner structure” of the original features
and try to find a new set of features which holds the same

”inner structure” in a low-dimensional space. In this paper,
we mainly focus on two kinds of feature learning method,
namely t-distributed stochastic neighbor embedding (t-SNE)
and Locally Linear Embedding (LLE).

1) t-Distribution Stochastic Neighborhood Embedding: In
Stochastic Neighborhood Embedding (SNE), we want to find
a new set of low-dimensional features which maintain same
“relative distance” between each features.

More concretely, we define the “conditional probability” of
node j given node i as follows

p(j|i) =
exp(−||xi − xj ||2)∑
k 6=i exp(−||xi − xk||2)

As we can see, p(j|i) is a value related to relative distances
between each pair of nodes. Given the whole conditional
probability distribution p(j|i), we can depict the structure of
data based on their relative distances.

In the same way, we can define the “conditional probability”
of node j given node i after dimensionality reduction as

q(j|i) =
exp(−||x̃i − x̃j ||2)∑
k 6=i exp(−||x̃i − x̃k||2)

to depict the relative distance between each pair of x̃, where
x̃ is the low-dimensional feature generated from x

The key of SNE algorithm is that we want two distributions
p(j|i) and q(j|i) to be as close as possible, since close
distribution between x and x̃ means x̃ can represent x well.

Mathematically, we can measure the “distance” between two
probability distribution using their KL distance, i.e.

KL(p||q) = E(p log
p

q
)

Define the loss function L as

L =
∑
i

KL(pi||qi) =
∑
i

∑
j

p(j|i) log
p(j|i)
q(j|i)

By minimize L, we can get the optimal set of low-dimensional
features {x̃i}.

If we replace the expression of p(j|i) (same for q(j|i)) as

p(j|i) =
(1 + ||xi − xj ||2)−1∑
k 6=i(1 + ||xi − xk||2)−1

then this algorithm is called t-Distribution Stochastic Neigh-
borhood Embedding (t-SNE).

2) Locally Linear Embedding: Locally Linear Embedding
(LLE) is similar to SNE algorithm, except that LLE only
focuses on every node’s closest k neighbors. Specifically, for
each node i, we find its top k closest neighbor nodes Ni and
try to represent it by those k nodes:

min
W

∑
i

||xi −
∑
j∈Ni

wijxj ||2

s.t.
∑
j

wij = 1

We can simplify above loss function as∑
i

||xi −
∑
j∈Ni

wijxj ||2

=
∑
i

||
∑
j∈Ni

wij(xi − xj)||2

=
∑
i

||(Xi −Ni)TWi||2

=
∑
i

WT
i (Xi −Ni)(Xi −Ni)TWi

where X(n×k)
i = [xi, xi, · · · , xi] and N (n×k)

i = concat(Ni).
Denote Zi = (Xi−Ni)(Xi−Ni)T , then the original objective
can be written as

min
W

∑
i

WT
i (xi − xj)(xi − xj)TWi

s.t. ∀i, WT
i 1k = 1

Using Lagrange multiplier method and KKT conditions, we
can get the optimal W ∗:

W ∗i =
Z−1
i 1k

1Tk Z
−1
i 1k

In LLE algorithm, we want to find a set of low-dimensional
features Y which maintain the same property as X , i.e.

min
Y

∑
i

||yi −
∑
j∈Ni

w∗ijyj ||2

s.t. Y TY = 1

Using the similar method used before, we can work out that
the optimal value of Y satisfies:

(1−W)(1−W)TY T = λY T

By choosing the eigenvectors corresponding to the d smallest
eigenvalues of matrix (1−W)(1−W)T , we can form matrix
Y T and therefore get a new set of d-dimensional features Y .

III. EXPERIMENTS

In order to compare the performance of each dimensionality
reduction methods mentioned above, we train SVMs for each
method and rank all dimensionality reduction methods based
on the accuracy of their corresponding SVMs.

A. Experimental Settings

1) Dataset: The dataset we used in our experiments is
Animals with Attributes (AwA2) dataset [1]. This is a image
classification dataset consists of 37322 images of 50 animal
classes. We use deep learning features of the images pre-
extracted by ResNet101 as the original feature (2048 dimen-
sion).

We shuffle the whole dataset and split it into two parts:
60% of the images (original features) are used for training
and the other 40% of the images (original features) are used
for testing. Moreover, we use k-fold cross-validation within

the training set in order to tune the hyper parameters in our
algorithms (such as the parameter C in SVM). In the rest of
this paper, we take k = 5 in default.

2) Support Vector Machine: A support vector machine
(SVM) will be trained on the post-processing features (in
the training set) generated by each dimensionality reduction
method. After that, we will test the performance (accuracy) of
the SVM on the test dataset.

SVM is a type of generalized linear classifier based on
supervised learning. The intuition of SVM is to find the
maximum-margin hyperplane which can classify the data into
two categories with the strongest robustness.

Mathematically, the margin of a SVM w.r.t a single sample
point (Xi, yi) is defined as

γi = yi(w
TXi + b)

The goal of (hard-)SVM is to find a hyperplane

wTX + b = 0

which maximize the lowest margin among all the sample
points, i.e.

max
w,b,τ

τ

s.t. ∀i, yi(wTXi + b) ≥ τ
||w|| = 1

or equivalently

min
w,b

1

2
||w||2

s.t. ∀i, yi(wTXi + b) ≥ 1

Note that our dataset may cannot be perfectly separated,
which may bring failure to the hard-SVM. So we can modify
above objective into soft-SVM:

min
w,b

1

2
||w||2 + C

∑
i

ξi

s.t. ∀i, yi(wTXi + b) ≥ 1− ξi
∀i, ξi ≥ 0

Using Lagrange multiplier method, we can transfer the
original objective into its dual form:

max
α

∑
i

αi −
1

2

∑
i

∑
j

yiyjαiαjX
T
i Xj

s.t. ∀i, 0 ≤ αi ≤ C∑
i

αiyi = 0

Above objective is a standard quadratic programming prob-
lem, which can be solved by some specific convex optimiza-
tion algorithms. Because SVM is not our keypoint in this
paper, so we directly use the svm.SVC class provided by
sklearn library in our following experiments.

B. Experimental Results

1) No Dimesionality Reduction: First of all, we directly use
the original features from AwA2 dataset to train a linear SVM
as the baseline. The performance of SVM are shown in Fig.
2.

Fig. 2. The accuracy of SVM trained on original features with different C’s

As we can see from fig. 2, the performance of our SVM
achieves highest accuracy when C = 0.001 (Val Acc =
93.03%, Test Acc = 93.59%). Higher or lower value of C
will decline the performance of our SVM. However, it is
noteworthy to mention that the influence of C is limited in
this case, since the accuracy of SVM only changes within 1%
under different C’s.

2) Faster-Greedy Forward Selection: The initial experiment
starts with a simple greedy algorithm: If adding a dimension
can improve average validation accuracy of five-fold valida-
tion, preserve it in the final answer, or remove it. However, in
the experiment, two problems are founded:
• this algorithm gets stuck when the number of selected

dimension reaches 78 and can’t add anymore dimensions.
• If our target number of dimension is larger than 78,

the algorithm will explore all the 2048 dimensions. This
is quite time-consuming. Even if the cross validation is
replaced with a faster criterion, it still takes us 7 hours
23 minutes and 40 seconds to generate the compressed
feature.

Using the generated 78-dim features to train SVM with
different C, the result is shown in table I. The faster-greedy

TABLE I
THE VALIDATION ACCURACY AND TEST ACCURACY OF SIMPLE GREEDY

ALGORITHM UNDER DIFFERENT C

C Validation Acc Test Acc

0.02 83.92% 84.35%
0.1 83.94% 84.44%
1 82.57% 82.92%

10 81.75% 82.25%
100 81.48% 82.05%

forward selection is born for solving the problems above. Set
the probability of accepting a worse result as p = 0.18, we
have the result of different dimension under different hyper-
parameter C, which is shown in table II, where n represents
the number of dimensions

TABLE II
THE VALIDATION ACCURACY OF FASTER-GREEDY FORWARD SELECTION

UNDER DIFFERENT DIMENSIONS AND VALUES OF C

n
C 0.02 0.1 1 10 100

1 5.46% 5.89% 6.10% 6.08% 6.08%
2 6.47% 7.04% 7.31% 7.36% 7.35%
5 14.72% 16.35% 17.04% 17.08% 17.06%

10 26.34% 30.57% 32.23% 32.44% 32.54%
20 42.28% 45.98% 47.87% 47.90% 47.91%
50 75.58% 76.63% 75.66% 74.96% 74.70%
100 82.65% 82.94% 81.43% 80.46% 80.21%
200 89.03% 88.22% 87.17% 86.93% 86.89%

Using the optimal Cs of different dimensions, we will
have the test accuracy of different dimension of faster-greedy
forward selection shown in table III

TABLE III
OPTIMAL C AND CORRESPONDING TEST ACCURACY OF DIFFERENT

DIMENSION

num of dimensions optimal C Test Accuracy

1 1 6.18%
2 10 7.83%
5 10 17.11%
10 100 33.35%
20 100 48.50%
50 0.1 77.60%

100 0.1 83.54%
200 0.02 89.58%

To prove that our algorithm reduce the run-time greatly at
the cost of only little test accuracy, we replace the simple
criterion in faster-greedy selection algorithm with the cross
validation and use the same options set of C, which is
{0.02, 0.1, 1, 10, 100} to train SVM. The C with the highest
validation accuracy is called the optimal C, and we have the
test accuracy under optimal Cs and the run-time compared
with the faster-greedy forward selection shown in table IV,
where FG means the our faster-greedy forward selection, CV
means replacing the simple criterion with cross validation and
n represents the number of dimensions. It’s very easy to find
that using simple criterion will not lead to a sharp decrease of
test accuracy, and even under some of the dimension the test
accuracy is higher.

TABLE IV
THE RUN-TIME AND THE TEST ACCURACY UNDER OPTIMAL C OF

SIMPLE CRITERION AND CROSS VALIDATION

n Run-time Test Accuracy
FG CV FG CV

2 30s 3min 19s 7.83% 8.62%
5 1min 45s 17min 43s 17.11% 19.71%
10 4min 28s 33min 35s 33.35% 23.45%
20 7min 49s 43min 31s 48.50% 53.14%
50 21min 27s 1h 26min 37s 77.60% 70.48%

100 1h 11min 39s 2h 23min 52s 83.54% 84.78%
200 2h 46min 48s 6h 20min 28s 89.58% 89.50%

3) Variance-based Selection: Sorting all the dimensions in
the descending order and pick out the top k order, we can have
a new feature with k as the number of dimension of the data.
That’s is how the variance-based selection works. The result
of different dimension count under different hyper-parameter
C is shown in table V. In table V, n represents the number of
dimensions, and the red items in the table represent the best
performance under the same number of dimension.

TABLE V
THE VALIDATION ACCURACY OF THE VARIANCE-BASED SELECTION

UNDER DIFFERENT DIMENSIONS AND DIFFERENT VALUES OF C .

n
C 0.01 0.02 0.1 0.5 1 10

1 6.39% 6.65% 6.91% 6.91% 6.92% 6.90%
2 8.68% 8.90% 9.42% 9.53% 9.53% 9.53%
5 23.28% 23.95% 24.66% 24.92% 24.98% 24.99%

10 39.71% 40.86% 42.40% 42.94% 43.07% 43.15%
20 64.21% 65.31% 66.53% 66.85% 66.77% 66.62%
50 81.90% 82.16% 81.94% 81.53% 81.29% 80.72%

100 89.05% 89.05% 88.26% 87.58% 87.27% 86.74%
200 91.11% 90.91% 90.09% 89.50% 89.36% 89.25%
500 92.15% 91.87% 91.38% 91.29% 91.29% 91.23%
1000 92.49% 92.33% 92.21% 92.21% 92.22% 92.14%
1500 92.55% 92.45% 92.43% 92.42% 92.42% 92.33%
2000 92.57% 92.52% 92.50% 92.49% 92.49% 92.40%

Using the optimal Cs under different dimension, we can
get the test accuracy of different data representation under
different dimensions, which is shown in figure 3 and table VI.

Fig. 3. Test Accuracy Under the optimal C of different number of dimensions
of variance-based selection

From table VI and figure 3, We can get as 97% performance
as the original feature with only 200 dimension of them.
We can also find that the variance-based selection algorithm
can have a outstanding performance when the number of
dimension is just 100, this means variance-based selection
algorithm is quite efficient. Also we can find out that when we
increase the number of dimension from 200 to 2000, the test
accuracy only have an increase of 1.46%, which means there
is much redundancy among the features, providing a strong
support for dimensionality reduction in turn.

TABLE VI
OPTIMAL C AND CORRESPONDING TEST ACCURACY OF DIFFERENT

DIMENSIONS OF VARIANCE-BASED SELECTION

num of dimension optimal C test accuracy

1 1 7.12%
2 10 10.09%
5 10 25.03%
10 10 43.20%
20 0.5 67.23%
50 0.02 82.70%

100 0.01 89.30%
200 0.01 91.63%
500 0.01 92.71%
1000 0.01 93.07%
1500 0.01 93.13%
2000 0.01 93.09%

4) Principal Component Analysis: Following the mathe-
matical principle introduced in Section II, we realize the PCA
algorithm with numpy python library and train a SVM on the
low-dimensional features generated by our PCA function. We
use k-fold (k = 5) to find the best value of the hyper parameter
C. The validation results are shown in TABLE VII.

Observing TABLE VII, we can conclude as follows:
• Different dimensionalities (n) of features have different

optimum hyper parameter C.
• When n = 2000 with C = 0.001, SVM achieves its

optimum performance (Accracy = 92.92%).
• The performance of SVM increases monotonically with

the increase of feature dimensionality n under the same
C. This phenomenon is also confirmed in Fig. 4, in which
we visualize ACC-n curve under several C’s.

Fig. 4. [PCA] The Val ACC - n curve under several C’s.

After training and validation phase, we test our SVMs which
are trained on various dimensionalities of features with their
own optimum C, the test result in listed in TABLE VIII and
visualized in Fig. 5. Farthermore, we also recorded the training
time spended to train SVM on each n (with their optimum C),
which is also visualized in Fig. 5.

As we can see from Fig. 5, the performance of SVM
is monotonously increasing with the increase of n, which
is consistent with our conclusion made in validation phase.
However, the training time of SVM has its minimum when
n = 20. Both the decrease of n and increase of n from the
value of 20 will lead to a longer training time.

TABLE VII
THE SVM VALIDATION ACCURACY TRAINED ON DIFFERENT DIMENSIONAL (n) FEATURES REDUCED BY PCA ALGORITHM WITH VARIOUS HYPER

PARAMETER C . THE RED VALUE IN EACH ROW IS THE OPTIMAL ACC. UNDER CORRESPONDING n. NOTE THAT WHEN n = 1000 AND C = 0.001, SVM
ACHIEVES THE OPTIMUM PERFORMANCE.

n
C 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100

2 23.96% 24.40% 24.73% 25.03% 25.14% 25.15% 25.14% 25.11% 25.15% 25.15% 25.19% 25.19% 25.19% 25.18% 25.17% 25.18% 25.15%
5 54.41% 55.69% 56.48% 56.92% 56.92% 56.97% 56.93% 56.87% 56.92% 56.92% 56.93% 56.91% 56.89% 56.89% 56.89% 56.87% 56.87%
10 76.57% 77.46% 78.07% 78.31% 78.35% 78.47% 78.34% 78.24% 78.18% 78.10% 78.05% 78.00% 78.01% 77.98% 78.02% 77.99% 78.00%
20 86.24% 86.88% 87.40% 87.63% 87.52% 87.37% 87.07% 86.91% 86.75% 86.52% 86.43% 86.39% 86.33% 86.35% 86.30% 86.25% 86.25%
50 90.87% 91.18% 91.30% 91.19% 91.02% 90.75% 90.30% 89.98% 89.72% 89.66% 89.56% 89.52% 89.46% 89.41% 89.37% 89.35% 89.36%

100 91.88% 92.24% 92.23% 92.07% 91.89% 91.43% 91.00% 90.70% 90.44% 90.29% 90.21% 90.22% 90.15% 90.13% 90.14% 90.11% 90.11%
200 92.38% 92.64% 92.69% 92.51% 92.21% 91.78% 91.44% 91.29% 91.16% 91.08% 91.08% 91.08% 91.04% 91.02% 91.00% 90.99% 90.99%
500 92.65% 92.86% 92.81% 92.59% 92.35% 92.22% 92.10% 92.05% 92.02% 92.02% 92.02% 92.02% 91.95% 91.94% 91.93% 91.93% 91.93%
1000 92.75% 92.92% 92.82% 92.66% 92.49% 92.41% 92.24% 92.25% 92.25% 92.25% 92.26% 92.25% 92.20% 92.17% 92.17% 92.17% 92.17%

TABLE VIII
THE SVM TEST ACCURACY TRAINED ON DIFFERENT DIMENSIONAL (n)

PCA-REDUCED FEATURES WITH THEIR OPTIMUM HYPER PARAMETER C .

n optimum C Test Accuracy
2 1 25.585%
5 0.02 57.334%
10 0.02 78.580%
20 0.005 87.606%
50 0.002 91.885%

100 0.001 92.522%
200 0.002 93.193%
500 0.001 93.441%
1000 0.001 93.542%

Fig. 5. [PCA] The Test ACC - n curve (blue solid curve) and training time
curve (green dotted curve) under each n’s optimum C.

The increase of n leading to longer training time is quite
easy to explain, since larger dimensionality of features means
more calculation to do with the matrices. However, the de-
crease of n also leading to longer training time is a little bit
counterintuitive. After analysis, our group guess that may be
small value of n cannot separate each type of data well. This
fact may lead to a larger #learning iteration for the SVM to
find the optimum parameters and therefore increase the total
training time.

In conclusion, the performance of SVM trained on PCA-
reduced features increased monotonously with the increase of
dimensionality of feature n. However, if we consider both the
accuracy of SVM as well as the training speed of SVM, our
group think it would be a nice choice to choose n = 50 ∼ 100
because of their relatively high accuracy and remarkable high

speed (comparing with greater n).
5) Linear Discriminant Analysis: Following the mathemat-

ical principle introduced in Section II, we realize the LDA
algorithm with numpy python library and train a SVM on the
low-dimensional features generated by our LDA function. We
use k-fold (k = 5) to find the best value of the hyper parameter
C. The validation results are shown in TABLE IX.

Observing TABLE IX, we can conclude as follows:

• Different dimensionalities (n) of features have different
optimum hyper parameter C (same as PCA).

• When n = 50 with C = 0.05, SVM achieves its optimum
performance (Accracy = 96.96%).

• Different from the PCA case, the performance of SVM
increases with the increase of feature dimensionality n
when n is small, and then decreases (slightly) with the
increase of n when n is large (under the same C). This
phenomenon is also confirmed in Fig. 6, in which we
visualize ACC-n curve under several C’s.

Fig. 6. [LDA] The Val ACC - n curve under several C’s.

The test result of SVM trained on LDA-reduced features
(n-dim) under n’s optimum hyper parameter C is shown in
TABLE X and visualized in Fig 7. Farthermore, we also
recorded the training time spended to train SVM on each n
(with their optimum C), which is also visualized in Fig. 7.

As we can see from Fig. 7, the SVM trained on n = 50 and
C = 0.05 not only achieves the highest accuracy among all
sets of parameters, but also spends the lowest period of time
for training. This shows that (n = 50, C = 0.05) is absolutely

TABLE IX
THE SVM VALIDATION ACCURACY TRAINED ON DIFFERENT DIMENSIONAL (n) FEATURES REDUCED BY LDA ALGORITHM WITH VARIOUS HYPER

PARAMETER C . THE RED VALUE IN EACH ROW IS THE OPTIMAL ACC. UNDER CORRESPONDING n. NOTE THAT WHEN n = 50 AND C = 0.05, SVM
ACHIEVES THE OPTIMUM PERFORMANCE.

n
C 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100

2 11.10% 14.98% 17.53% 20.50% 26.40% 29.71% 31.07% 32.02% 32.57% 32.81% 32.74% 32.74% 32.77% 32.78% 32.78% 32.78% 32.79%
5 27.26% 34.48% 43.45% 50.96% 54.15% 57.53% 60.19% 60.98% 61.19% 61.29% 61.41% 61.40% 61.33% 61.33% 61.39% 61.36% 61.38%
10 40.61% 50.43% 59.57% 68.14% 72.36% 74.41% 75.58% 75.91% 76.22% 76.35% 76.34% 76.32% 76.22% 76.15% 76.08% 76.06% 76.02%
20 60.40% 72.25% 77.73% 83.20% 84.77% 86.37% 87.14% 87.47% 87.44% 87.11% 87.02% 86.89% 86.60% 86.65% 86.54% 86.47% 86.44%
50 91.39% 93.89% 95.69% 96.30% 96.63% 96.80% 96.96% 96.81% 96.71% 96.48% 96.25% 96.06% 95.90% 95.71% 95.68% 95.58% 95.55%

100 91.44% 93.92% 95.69% 96.36% 96.64% 96.84% 96.82% 96.71% 96.51% 96.22% 96.07% 95.89% 95.76% 95.73% 95.70% 95.67% 95.64%
200 91.37% 93.94% 95.65% 96.35% 96.61% 96.67% 96.70% 96.47% 96.22% 95.99% 95.88% 95.74% 95.60% 95.54% 95.48% 95.43% 95.41%
500 91.24% 93.84% 95.47% 96.20% 96.35% 96.21% 96.06% 95.85% 95.57% 95.37% 95.26% 95.14% 95.09% 95.09% 95.08% 95.04% 95.02%
1000 90.98% 93.63% 95.16% 95.73% 95.91% 95.62% 95.29% 95.03% 94.96% 94.82% 94.78% 94.79% 94.77% 94.76% 94.73% 94.69% 94.69%

TABLE X
THE SVM TEST ACCURACY TRAINED ON DIFFERENT DIMENSIONAL (n)

LDA-REDUCED FEATURES WITH THEIR OPTIMUM HYPER PARAMETER C .

n optimum C Test Accuracy
2 0.5 31.084%
5 1 57.870%
10 0.5 72.027%
20 0.1 83.260%
50 0.05 93.139%

100 0.02 93.032%
200 0.05 92.811%
500 0.01 92.750%
1000 0.01 92.764%

Fig. 7. [LDA] The Test ACC - n curve (blue solid curve) and training time
curve (green dotted curve) under each n’s optimum C.

the best pair of hyper parameters for LDA algorithm in this
task.

Our group also did some comparation between PCA and
LDA. Fig. 8 and Fig. 9 shows PCA and LDA’s Test/Val
Accuracies and Training times respectively.

Fig. 8 shows that these two kinds of feature projection
methods have similar test accuracy under different n, while
Fig. 8 shows that these two methods also leads similar training
time to learn the SVM. These facts shows great similarity
between these two methods.

However, if we observe the curves in Fig. 8 more carefully,
we can find that there is a wider gap between LDA’s val and
test Acc. than PCA’s. Our group think this phenomenon is
reasonable since LDA is a label-aware algorithm which can
fit the training set better than PCA. On the other hand, this

Fig. 8. The test/val Acc. (solid/dotted
curves) of SVM trained on PCA/LDA-
reduced features with different dimen-
sionality n

Fig. 9. The training time used to train
SVM on PCA/LDA-reduced features
with different dimensionality n

phenomenon also shows that LDA can more easily leads to
overfitting than PCA, which should be carefully avoided in the
future.

In conclusion, when we take n = 50 and C = 0.05,
we not only can train a best-performanced SVM on LDA-
reduced data, but also can achieve the fastest training speed.
So our group strongly recommend (n = 50, C = 0.05) as the
parameters used in LDA method.

6) Auto-Encoder: In the experiment, we implement a
auto-encoder with six linear layers using Pytorch. The
structures of both encoder and decoder are very sim-
ple. The encoder consists of three linear layers and two
ReLU activate function. And the decoder consists of three
linear layers and three ReLU function. More narrowly,
the dimensions of the input and the hidden layers are
{2048, 1024, 512, d, 512, 1024, 2048}, where d represents the
number of dimension of input’s representation. The structure
of our auto-encoder is shown in Fig. 10.

As for training, we use Adam optimizer to train the auto-
encoder with a batch size of 256 and initial learning rate
of 0.001. The training is unexpectedly fast and the model
converges within only tens of epochs.

Using the the d-dimensional encoded data as new data
feature representation, we have the validation accuracy under
different C, which is shown in tableXI. In table XI, n repre-
sents the number of dimension, and the red items in the table
represents the best performance under the same number of
dimension. All the accuracy shown in the table is the average

Fig. 10. The structure of our auto-encoder

accuracy under a five-fold validation. According to this table,
we will have when n = 500 and C = 1, the auto-encoder will
have the best performance.

TABLE XI
THE VALIDATION ACCURACY OF THE AUTO-ENCODER UNDER DIFFERENT

DIMENSIONS AND DIFFERENT VALUES OF C .

n
C 0.02 0.1 0.5 1 10 100

2 4.40% 7.05% 7.79% 8.24% 10.85% 11.74%
5 6.98% 10.75% 21.13% 27.73% 34.40% 35.24%
10 4.51% 10.29% 25.00% 32.31% 39.00% 39.62%
20 6.94% 17.53% 49.09% 55.44% 61.72% 62.08%
50 12.57% 52.40% 74.63% 77.70% 81.06% 80.12%

100 20.93% 70.10% 81.90% 83.61% 85.30% 84.07%
200 53.91% 81.02% 86.77% 87.73% 88.18% 86.91%
500 70.43% 84.98% 88.38% 88.75% 87.92% 87.05%

Using those C of highest validation accuracy of different
number of dimensions, the test accuracy is shown in figure 11.
From figure 11, we can find that the increase of test accuracy
is not worth mentioning when the number of dimensions is
larger than 100, which means the auto-encoder can compress
the data feature efficiently (just compress the data into 100
dimensions, we can have a test accuracy of 86.06%, which is
92% of the SVM use uncompressed feature to train).

7) t-Distribution Stochastic Neighborhood Embedding:
we use sklearn.manifold.TSNE to implement t-
Distribution Stochastic Neighborhood Embedding. The param-
eters of this function are:
• n component, representing the target number of dimen-

sion of reduced feature.
• method, can be chosen between exact and
barnes_hut. The exact method requires a lot
of computation resources and a large memory. It
has a time complexity of O(n2). Also, we can use
the barnes_hut to make a approximation, which
has a time complexity of O(n log n). However, this
approximation only works when n component < 4.

• init, which can be chosen between random and pca.
This parameter determines how the output is initialized.
In this experiment, we only use pca.

Fig. 11. Test Accuracy of Auto-Encoder Under the Best C of different number
of dimensions

Limited by the computation resources, we only conduct the
experiments with n component = 2 and n component = 3.
Also we tried three method for experiment:
• use the raw data as the input, which is denoted as RAW-

tsne in the following part.
• use LDA to reduce the input to 49 dimensions and use it

as the input of t-sne. This is denoted as LDA-tsne in the
following part.

• use pca to reduce the input to 200 dimensions and use it
as the input of t-sne. This is denoted as PCA-tsne in the
following part.

We also conduct the training under different values of C, the
result is shown in table XII and table XIII. limited by the
size of the train set, when the the feature are reduced to 2
dimensions and C are greater than 1, the SVM become very
difficult to converge, and the cross validation can’t be carried
out smoothly. Thus we only use C ∈ {0.02, 0.1, 0.5} to carry
out the experiment.

TABLE XII
VALIDATION ACCURACY UNDER DIFFERENT C WHEN REDUCED TO 3

DIMENSIONS

C 0.02 0.1 0.5 1 10 100

RAW 87.62% 87.72% 87.73% 87.73% 87.72% 87.69%
LDA-tsne 95.28% 95.25% 95.25% 95.25% 95.24% 95.24%
PCA-tsne 88.21% 88.29% 88.33% 88.32% 88.34% 88.35%

TABLE XIII
VALIDATION ACCURACY UNDER DIFFERENT C WHEN REDUCED TO 2

DIMENSIONS

C 0.02 0.1 0.5

RAW 86.92% 86.93% 86.93%
LDA-tsne 95.31% 95.31% 95.32%
PCA-tsne 86.82% 86.85% 86.85%

Using the optimal C, we have the test Validation of different
experiment under the optimal C shown in table XIV. We can

easily find that using LDA to make a pre-process before t-
sne greatly increases test accuracy. This really make sense
because what the LDA algorithm do is to maximize σ2

between

σ2
within

.
In other word, what LDA do make the features within the
same class get closer and the features of different classes
more separated. This can also be seen directly by visualization.
Comparing figure 12(a), 12(b) and 12(c), we can see that
features processed by LDA have the largest gap between
classes and that’s the reason why it has the best performance.

TABLE XIV
TEST ACCURACY UNDER OPTIMAL C OF DIFFERENT EXPERIMENT OF

T-SNE

Experiment num of dimension Optimal C Test Accuracy

RAW 2 0.5 87.25%
RAW 3 1 87.75%

LDA-tsne 2 0.5 95.45%
LDA-tsne 3 0.02 95.62%
PCA-tsne 2 0.1 87.12%
PCA-tsne 3 100 88.32%

(a) 3D visualization of
compressed feature with-
out processing

(b) 3D visualization of
compressed feature with
LDA pre-processing

(c) 3D visualization of
compressed feature with
PCA pre-processing

Fig. 12. 3D visualization of features compressed by t-SNE

8) Locally Linear Embedding: In this experiment, we di-
rectly use LocallyLinearEmbedding() function pro-
vided in sklearn.manifold library to implement LLE
dimensionnality reduction. We have tried different paris of
parameters (neighbor, n component, C), where neighbor
is the number of nodes in target nodes’s neighbor N ,
n component (i.e. n) is the dimensionality of features after
reduced, C is a hyper parameter in SVM.

Note that LLE algorithm need to maintain a N ×N matrix
W (N = 37322 is the total number of features in the dataset)
in RAM, whose size is definitely greater than the total size of
our device’s virtual memory. In order to avoid this problem,
we reduce the size N of the original dataset by sampling 20%
of features from each category and formed a new dataset with
only 1

5 of previous size. The following experiments are all
conducted on this new dataset.

The results of our experiments with different pairs of pa-
rameters (neighbor, n component, C) are shown in TABLE
XV. Note that different from previous methods, LLE can not
learn a projection matrix which suits all kinds of data. Instead,
LLE have to relearn low-dimensional features given new data.
This fact means that we have to put all data (train set + test

set) together to learn low-dimensional features, instead of only
use the train dataset.

Observing TABLE XV, we can conclude as follows:
• The performance of SVM is very poor when C is small,

but the circumstance changes dramatically when C starts
to grow bigger and eventually greater than 2 ∼ 5. The
performance of SVMs have a big jump at C = 2 or 5.
This phenomenon is also depicted in Fig. 13 (we take
neighbor = 20, n = 50 as example).

• When neighbor = 50, n = 200 with C = 200, SVM
achieves its optimum performance (Accracy = 89.30%).
We speculate that the performance of SVM can grow
higher if we continue to increase the values of neighbor
and n.

• The performance of SVM increases monotonically with
the increase of the values of neighbor and n under the
same C.

In order to explore why the performance of SVM jumps
dramatically when C = 2 ∼ 5, we visualize the low-
dimensional features when neighbor = 20 and n = 2. The
visualization is shown in Fig. 14.

Fig. 13. [LLE] The accuracy-C curve of the SVM when neighbor = 20,
n = 50

Fig. 14. The visualization of LLE-
reduced features when neighbor =
20, n = 2

Fig. 15. The visualization of LDA-
reduced features when neighbor =
20, n = 2

As we can see from Fig. 14, the LLE-reduced features of
different categories mixed with each other heavily. Since SVM
with large C has a greater penalty to false classifications, we
think a “harder” SVM may form a “harder margin” between
different categories and therefore divided them into groups
better than a “softer” SVM in this case.

As a contrast, we also visualize the low-dimensional fea-
tures reduced by LDA in Fig. 15. We can obviously see that

TABLE XV
THE SVM VALIDATION ACCURACY TRAINED ON DIFFERENT DIMENSIONAL (n) FEATURES REDUCED BY LDA ALGORITHM WITH VARIOUS HYPER

PARAMETER C .

neighbor n\C 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000

5

2 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 6.73% 8.57% 7.95% 9.61% 10.81% 12.05% 12.30% 12.34%
5 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.44% 9.19% 13.52% 13.07% 14.81% 15.98% 17.36% 20.84% 21.04%

10 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 5.90% 5.90% 5.90% 26.79% 27.79% 29.15% 32.03% 37.25% 38.36%
20 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 9.32% 42.42% 50.52% 56.89% 59.89% 59.89% 65.06% 68.52% 71.76%
50 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.48% 44.86% 76.40% 78.38% 80.11% 82.97% 83.91% 84.40% 84.55% 85.11%
100 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.86% 63.42% 81.49% 82.95% 84.15% 85.93% 85.93% 86.99% 86.88% 86.90%
200 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 66.53% 84.08% 85.42% 86.42% 87.48% 87.79% 87.90% 87.50% 87.33%

10

2 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.75% 6.73% 6.73% 6.73% 6.73% 6.73% 6.73% 6.79% 8.63%
5 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.75% 12.14% 12.19% 15.96% 18.05% 20.55% 20.84% 22.73% 27.72%

10 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.99% 18.76% 29.03% 32.21% 37.11% 38.16% 45.37% 51.88% 54.63%
20 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 10.32% 45.44% 50.19% 58.91% 66.28% 68.06% 71.48% 74.43% 75.94%
50 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.93% 54.85% 76.54% 79.25% 82.18% 83.88% 84.88% 85.73% 86.13% 86.59%
100 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.95% 60.78% 80.67% 83.26% 85.04% 86.50% 87.10% 87.28% 87.81% 87.92%
200 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 5.31% 63.22% 82.77% 85.46% 86.88% 88.70% 88.72% 88.68% 88.01% 87.86%

20

2 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 6.73% 10.32% 10.32% 14.65% 14.65% 15.29% 21.35% 23.44%
5 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 10.30% 20.04% 20.62% 23.17% 26.28% 31.79% 39.27% 39.27%

10 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 6.99% 22.29% 31.10% 37.27% 43.42% 48.83% 54.54% 64.35% 66.30%
20 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.42% 16.85% 16.85% 51.17% 56.87% 62.55% 67.84% 72.79% 77.03% 78.45%
50 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.93% 48.30% 73.03% 77.65% 80.47% 83.29% 84.77% 85.31% 86.19% 86.93%
100 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 55.69% 78.87% 81.84% 84.28% 86.30% 87.26% 87.70% 88.28% 88.12%
200 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 5.44% 59.05% 81.64% 85.24% 87.33% 88.24% 88.55% 88.83% 88.35% 88.01%

50

2 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 7.39% 7.39% 12.14% 15.21% 15.21% 15.21% 15.21% 25.42%
5 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 14.25% 16.76% 16.71% 16.71% 25.42% 31.76% 39.02% 44.55%

10 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 6.99% 19.80% 30.68% 39.58% 52.32% 60.89% 65.04% 71.12% 74.05%
20 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.42% 14.67% 45.11% 55.21% 60.84% 69.90% 75.23% 78.91% 82.02% 82.42%
50 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 4.73% 38.11% 72.83% 78.93% 78.93% 85.13% 86.19% 87.06% 87.57% 87.59%
100 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 5.06% 51.83% 79.58% 83.97% 86.26% 87.48% 88.48% 88.90% 89.03% 88.88%
200 4.40% 4.40% 4.40% 4.40% 4.40% 4.40% 5.33% 55.07% 82.24% 85.99% 87.90% 88.75% 89.26% 89.30% 88.46% 88.17%

LDA-reduced features of different categories seperate with
each other nicely (compared with LLE case) and therefore lead
to a lower optimum C value (0.005). This fact is consistent
with our above hypotheses.

In conclusion, the performance of SVM trained on LLE-
reduced data strongly depends on the value of C. Specifically,
we usually need to choose a very large C = 200 ∼ 1000
to achieve a relatively good performance of SVM. More-
over, larger value of neighbor and n often leads to higher
performance under same value of C. In practice, our group
recommend using neighbor = 50, n = 200 and C = 200 as
parameters.

C. Results Conclusion

The best performance and corresponding running time of
each dimensionality reduction methods are listed in TABLE
XVI. Note that the running time listed in TABLE XVI contains
both the time used for dimensionality reduction and the time
used to train the SVM.

As we can see from TABLE XVI, algorithm PCA (n =
1000) achieves best classification accuracy among all kinds of
method with only 0.05% difference compared with original
high-dimensional features.

From another perspective, algorithm LDA runs fastest
among all kinds of method, which only uses 1

71 of running
time compared with original features and 1

44 compared with
PCA. What’s more, algorithm LDA has a relatively small
optimal n comparing to other methods, which means that

TABLE XVI
THE BEST PERFORMANCE AND CORRESPONDING RUNNING TIME OF EACH

DIMENSIONALITY REDUCTION METHODS. NOTE THAT “FGFS” IS THE
ABBREVIATION OF “FASTER-GREEDY FORWARD SELECTION”, “VBS” IS
THE ABBREVIATION OF “VARIANCE-BASED SELECTION”. “***” MEANS

WE DO NOT RECORD CORRESPONDING DATA.

Method Best Acc. Dimension (n) Running Time

- 93.59% (2048) 7min 52s
FGFS 89.58% 200 2h 46min 48s
VBS 93.13% 1500 ***
PCA 93.54% 1000 4min 52s
LDA 93.14% 50 6.6s
AE 89.20% 500 ***

t-SNE (+LDA) 95.62% 3 6min 27s
LLE 89.30% 200 1min 1s

LDA-reduced features have smaller size and therefore requires
less memory space. So in some time-sensitive or space-
sensitive circumstances, it will be a better choice to use LDA
algorithm rather than PCA algorithm.

Summarizing the performance of three types of dimension-
allity reduction methods, we have:
• Feature selection methods are the simplest type of

method which are very easy to understand and implement.
Assisted by the intuition of choosing dimensions with
maximum variances from PCA, feature selection methods
can achieve a relatively high performance in preserving
information of original data.

• Feature projection methods can be regard as upgrade

version of feature selection. Method PCA performs the
highest classification accuracy among all feature projec-
tion methods, while LDA has the best time and space
property with a well-performed accuracy.

• Feature Learning methods are the most special type
of method among the three. Method t-SNE (with LDA
processing) achieves the best accuracy among all kinds
of methods. However, because feature learning methods
(e.g. t-SNE, LLE) usually cannot learn a projection ma-
trix W to depict how to project original high-dimensional
data into a lower-dimensional space, we have to relearn
the projection pattern every time we add some new data
into our dataset. This property limits the expansibility of
the feature learning methods. What’s more, feature learn-
ing methods usually consumes a huge scale of memory
when the size of dataset are big, which means that feature
learning methods have a relatively high requirement on
the computing device. Due to these two shortcomings,
we only recommend feature learning methods for tasks
with relatively small and static dataset.

IV. CONCLUSION

In this paper, we introduced and implemented totally 7
dimensionality reduction methods, namely Faster-Greedy For-
ward Selection, Variance-Based Selection, PCA, LDA, Auto-
Encoder, t-SNE and LLE. We evaluated the performance of
these methods by training SVM on features reduced by them
and comparing the accuracy of each SVM. Our experiments
show that t-SNE with LDA preprocessing achieves the highest
accuracy, while LDA has the best time and spatial properties.

ACKNOWLEDGMENT

This work is supported by Professor Niu and all teaching
assistants in class CS245. We thank Teng Hu, Shengran
Cheng, Shuhao Deng for valuable discussion. We greatly thank
Professor Wang for the computing equipment provided by his
lab.

REFERENCES

[1] Y. Xian, C. H. Lampert, S. Bernt, and A. Zeynep, “Zero-shot learning
- a comprehensive evaluation of the good, the bad and the ugly,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, vol. PP, no. 99,
pp. 1–1, 2017.

