
Report for Data Science Project 2

Xiaoshuang Chen†, Xu Lin†, Xinpeng Liu†, Yue Xu†,

Abstract— Distance metric is a important subject in machine
learning, especially to K nearest neighbors algorithm (KNN),
since by choosing a proper distance metric on data set, some
indivisible problems can be transformed into linear problems.
In this paper, we evaluated the performance of some popular
distance metrics on Animals with Attributes (AwA2) data set.
During the experiments, we implemented KNN with CUDA
to accelerate the inference, whose source code is made public.
We also implemented and compared various popular metric
learning algorithms and analyzed the difference of them.
Furthermore, we did a comprehensive and thorough research
on cosine distance and Lp normalization and gave our proofs,
conclusions and hypothesis.

I. INTRODUCTION

Distance metric is a important subject in machine learning
since by choosing a proper distance metric on data set, some
indivisible problems can be transformed into linear problems.
And due to the low extra computational burden of different
distance metrics, it becomes fundamental to select a metric
that match the practical problem. The algorithm that most
dependent to metric is K-nearest neighbors (KNN), for it
makes prediction fully relying on the distance to the samples
in training set. The choice of distance metric can significantly
affects the performance of KNN as well as other similar
algorithms.

Distance metrics have developed for decades. For vec-
tor metric, the simplest and most commonly used one is
Minkowsky distance, namely Lp distance, which can be
regarded as the Lp norm of the difference of two vectors,
including Manhattan, Euclidean, Chebyshev distance and
so on. Another simple metric is cosine distance, which is
widely used in text processing. For probability distribution
metric, EMD (Earth’s Mover Distance), MMD (Maximum
Mean Discrepancy) are most typical ones. Divergence is also
popular for probability metric, including KL divergence, JD
divergence and Bregman divergence, though most of them
do not strictly satisfy the rules of metrics. Nowadays, metric
learning methods grows rapidly since they exploit the infor-
mation of data distribution or data labels. Metric learning
tries to learn the optimal matrix M in Mahalanobis distance.
Some of the learning algorithms are LMNN[1], contrastive
loss[2], NCA[3], semi-hard mining[4] and binomial deviance
loss.

In this paper, we evaluated the performance of some popu-
lar distance metrics on Animals with Attributes (AwA2) data
set[5], including Minkowsky distance, cosine distance, Breg-
man divergence, LMNN[1], contrastive loss[2], NCA[3],
semi-hard mining[4] and binomial deviance loss. We wrote

† Equal contribution.

CUDA implementation of KNN and compared the KNN
classification accuracy with different distance metrics. The
metrics and algorithms are introduced in detail and experi-
mented in section II and section III. Moreover, we met some
problems or raised some conjectures from our results, and
conducted further experiments to explain the reasons of our
results in section IV.

There are three main highlights of our work. First, we
used CUDA and GPU to implement KNN algorithm and
significantly accelerated the prediction. We also made the
source code public1. Second, we implemented and compared
various popular metric learning algorithms and analyzed the
difference of them. Third, we did a comprehensive and thor-
ough research on cosine distance and Lp normalization. We
gave our proofs, conclusions and hypothesis in subsection IV-
A.

II. METHOD

A. KNN and CUDA Implementation

KNN (K nearest neighbors) is a simple and non-parameter
algorithm widely used in supervised learning. For each test
sample, KNN gives a prediction based on the nearest K
samples in the training set. Specifically, for classification
problems, the sample is classified by a plurality vote of its K
nearest neighbors. As KNN relies on the distance of samples
to classify, the distance metric is decisive to its performance.
We will discuss the impact of distance metrics on KNN in
the most part of this paper.

KNN also suffers from high computational complexity at
inference because it computes the distance between every test
sample and training sample. Thanks to the rapid development
of parallel computing chips like GPUs, we implemented
KNN with different distance metrics with CUDA on GPU,
which significantly accelerate the inference of the algorithm.
The KNN classification on CUDA can be divided into 3
steps:

1) Compute the distance between Ntr training samples
and Nte test sample;

2) (Partially) sort distance vector of each test samples;
3) Choose the nearest K neighbors of each test samples

and give the plurality vote result.
In the second step, our choice of sort algorithm is heap

sort because recursive quick sort and merge sort which has
high space complexity are not suitable for CUDA. And heap
sort can also be modified to partial sort algorithm to reduce
the unnecessary computation. In step 3, we can calculate
the accuracy of different K’s at one time since the plurality

1https://github.com/silicx/KNN-PyCUDA

1

https://github.com/silicx/KNN-PyCUDA

vote can be progressively computed. The time complexity
of three steps are O(NtrNteD), O(Ntr +Km logNtr) and
O(NteKm) respectively, where D is sample dimensionality
and Km is the number of K in KNN that we want to
evaluate. Our implementation detail and results are shown
in subsection III-B.

B. Simple Distance Metrics

1) Minkowsky distance: Minkowsky distance is the most
popular distance metric due to its simplicity. It can be seen
as the Lp norm of the difference between two vectors:

distp (x,y) = ‖x− y‖p =

(
d∑
i=1

(xi − yi)p
) 1

p

(1)

The most commonly used p is 1, 2 and ∞, respectively
named Manhattan, Euclidean and Chebyshev distance:

distmanh (x,y) = ‖x− y‖1 =

d∑
i=1

|xi − yi|

disteucl (x,y) = ‖x− y‖2 =

√
(x− y)

T
(x− y)

distcheb (x,y) = ‖x− y‖∞ = max |xi − yi|

, (2)

2) Cosine similarity and its variants: Cosine similarity
measures the similarity between two vectors by the cosine
of their angle. Given two vectors x,y, the cosine similarity
of them is defined as:

Simcos (x,y) = cos < x,y >

=
xTy

‖x‖‖y‖
(3)

which ranges from -1 to 1. Since cosine similarity measures
the similarity of vectors rather than distance, we define
cosine distance to evaluate the distance of two samples:

distcos =
1

2
(1− Simcos) (4)

Note that cosine distance is only a pre-metric instead of
metric which varies from 0 to 1, but it still can be used
as a distance metric in many algorithms.

A popular variant of cosine similarity is ADJUSTED CO-
SINE SIMILARITY which is done by subtract the mean of
samples. This resembles the cosine similarity of z-score
normalized data and we implemented and studied normalized
cosine distance in section III instead of adjusted one.

3) Divergences: Bregman divergence[6] is a measurement
of distance between two points or probability distributions.
One of the cases of Bregman divergence is squared Euclidean
distance.

Let F : Ω → R be a continuously-differentiable, strictly
convex function defined on a closed convex set Ω. The
Bregman divergence associated with F for points p, q ∈ Ω
is the difference between the value of F at point p and the

value of the first-order Taylor expansion of F around point
q evaluated at point p:

DF (p, q) = F (p)− F (q)− 〈∇F (q), p− q〉 (5)

Bregman divergence has four properties: Non-negativity,
Convexity, Linearity and Duality.

Different convex function will generate different cases
of Bregman divergences. Here lists some examples of
distance/divergence(Squared Euclidean distance, generalized
KL divergence and ItakuraSaito distance) and the corre-
sponding convex function F :

F (x) DF (x, y)
‖x‖2 ‖x− y‖2∑

i p(i) log p(i)
∑

i p(i) log
p(i)
q(i)
−

∑
p(i) +

∑
q(i)

−
∑

i log p(i)
∑

i(
p(i)
q(i)
− log

p(i)
q(i)
− 1)

TABLE I
BREGMAN DIVERGENCES

C. Metric Learning

Simple distance metrics mentioned in subsection II-B can
usually provide passable results for algorithms like KNN.
However, since simple standard distance metrics could ignore
some important properties for specific tasks, the results may
be non-optimal.
Here comes the idea of metric learning: project samples to
another space, where the simple distance metrics could work
better for specific tasks. If we limit the simple distance metric
to Euclidean distance, what we want to learn is actually a
Mahalanobis distance[7] as Equation 6 shows:

d(x1, x2) = (XL)T (XL) = XTLTLX (6)

The goal is to learn a suitable L for a specific task.
Many methods of metric learning have been proposed,
like LMNN, NCA, IMTL, etc. Also, some dimensionality
reduction methods could also be seen as metric learning,
such as LDA.

In this paper, we performed 6 popular metric learn-
ing methods, including neighborhood based methods like
LMNN and information theory based methods like NCA and
MCML.

1) Large Margin Nearest Neighbor: LMNN[1] is a su-
pervised metric learning method that tries to learn a distance
metric for KNN classifier. The main intuition behind LMNN
is to learn a pseudo-metric under which all data instances in
the training set are surrounded by at least k instances that
share the same class label. Thus, the leave-one-out error of
KNN can be minimized.
Let {(xi, yi)}ni=1 denote a training set of n labeled examples
with xi ∈ Rd and class labels yi. yij denotes xi and xj
belong to the same class. Our goal is to learn a distance
metric d(x, y), which is computed as Equation 7:

d(x,y) = (x− y)TLTL(x− y) (7)

2

, where L is initialized to unit matrix of size d × d. We
first use d(x, y) to compute distance matrix Dn×n. Then we
define ηij , which indicates whether xj is one of the k-nearest
neighbors that share the same label with xi. If ηij = 1, we
call xj is a target neighbor of xi. ηn×n won’t be changed
during the whole learning procedure. Then we minimize the
object function described in Equation 8.

J(L) =
∑
ij

ηijd(xi, xj) + c
∑
ijl

ηij(1− yil)zijl

zijl = max(1 + d(xi, xj)− d(xi, xl), 0)

(8)

J(L) is composed of two terms. The first term penalizes
large distances between each sample and its target neighbors.
The second term penalizes the small distances between each
sample and all the other samples except its target neighbors.
By optimizing this, the goal can be achieved.

2) Contrastive Loss: Contrastive loss[2] was first pro-
posed for dimensionality reduction. However, it can also be
used for metric learning without many changes. The learning
solely relies on the neighborhood relations and doesn’t need
any distance measure in the input space. The main idea of
Contrastive loss is to find a mapping, which maps similar
samples to close points and dissimilar samples to distant
points.
Let Xn×d = {x1;x2; . . . ;xn} denote the original samples,
GM (xi) = Mxi denote the mapped points of xi, and
DM (xi, xj) denote the defined distance between GM (xi)
and GM (xj). And define yij = 1 if xi and xj are dissimilar,
otherwise we set yij = 0. The objective function for a given
transform matrix M can be defined as

L(M,xi, xj) =(1− yij)DM (xi, xj)+

yijmax(c−DM (xi, xj), 0)
(9)

, where c is a margin. The function is quite ocular, punishing
the distances between similar points and ensure dissimilar
points’ distances bigger than a given value.

3) Neighbourhood Components Analysis: NCA[3] is a
supervised metric learning method that aims to maximize
the expected number of points correctly classified based on
softmax normalization.

In particular, each point i selects another point j as its
neighbor with some probability pij , and inherits its class
label from the point it selects. The probability pij is defined
using a softmax over Euclidean distances in the transformed
space:

pij =
exp

(
−‖Lxi − Lxj‖2

)
∑
k 6=i exp

(
−‖Lxi − Lxk‖2

) , pii = 0 (10)

where L is the transformation matrix.
Under this stochastic selection rule, we can compute the

probability pi that point i will be correctly classified (denote
the set of points in the same class as i by Ci = {j|ci = cj}):

pi =
∑
j∈Ci

pij (11)

Thus, the objective the model aims to maximize is the
expected number of points correctly classified under this
scheme:

f(A) =
∑
i

∑
j∈Ci

pij =
∑
i

pi (12)

4) Semi-Hard Mining Strategy: Semi-Hard Mining
Strategy[4] is a method with margin strategy for metric
learning. As a supervised metric learning method, it aims
to ensure a point xi is closer to all other points xpi (positive)
of the same label than it is to any point xni (negative) of
different labels. The points xi, x

p
i , x

n
i can be called a triplet.

Thus we want:

‖f (xai)− f (xpi)‖
2
2 + α < ‖f (xai)− f (xni)‖22 ,

∀ (f (xai) , f (xpi) , f (xni)) ∈ T .
(13)

where α is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the
training set.

The loss to be minimized is then

L =

N∑
i

[
‖f (xai)− f (xpi)‖

2
2 − ‖f (xai)− f (xni)‖22 + α

]
+
.

(14)

5) Binomial Deviance Loss: This model uses binomial
deviance as the cost function, which is formulated as

Jdev =
∑
i,j

W ◦ ln
(
e−α(S−β)◦M + 1

)
, (15)

where ◦ is element-wise matrix product, and M,W is defined
as

M = [Mij]n×n , Mij =

 1, positive pair
−1, negative pair
0, neglected pair

W = [Wij]n×n , Wij =


1
n1
, positive pair

1
n2
, negative pair

0, neglected pair

(16)

and S is the similarity matrix. In our experiments, S was
defined based on Euclidean distance:

Seuc(x,y) = −
∑
i

(xi − yi)
2

(17)

and α, β is hyper-parameters in this model, which is specified
in the experiment section.

6) Maximally Collapsing Metric Learning: MCML[8] is
a supervised distance metric learning technique, based on
the idea that if all the samples of the same class were
projected to the same point, and data of different classes
were projected to different points and sufficiently far away,
we would have an ideal class separation. The target is to learn
a projection matrix L that satisfies this. To achieve this, it
exploits the tools provided by the information theory. First,
it introduces a probability distribution like that proposed in
subsubsection II-C.3:

pM (j|i) =
exp

(
−‖Lxi − Lxj‖2

)
∑
k 6=i exp

(
−‖Lxi − Lxk‖2

) (18)

3

, where pM j|i indicates the probability that xj will be
classified with the class of xi. And the ideal distribution
we are looking for is a binary distribution for which the
probability that a sample is correctly classified is 1, and 0
otherwise, that is,

p0(j|i) = 1(yi = yj) (19)

Thus the objective function can be defined as

J (L) =

n∑
i=0

KL(p0(∗|i)|pM (∗|i)) (20)

III. EXPERIMENT

In this section, we used various popular dimensionality
reduction methods described in section II. If not mentioned,
the algorithms were implemented with Python 3. Besides,
PyCUDA[9] was used to improve the speed of KNN and
PyTorch was used to accelerate metric learning algorithms.

A. Data Set

We evaluated the chosen dimensionality reduction method
on Animals with Attributes (AwA2) data set[5]. This data
set consists pre-extracted 2048-dimensional deep learning
features for 37322 images of 50 animal classes. We split
the images in each category into 60% for training and 40%
for testing.

B. CUDA Implementation of KNN

We implemented KNN with different distance metrics with
PyCUDA[9], which is a Python interface and JIT compiler of
C++ CUDA kernel functions. As described in subsection II-
A, the inference procedure of our approach has three steps:
distance measurement, sorting and voting. To fully exploit
the parellelism of GPU, our implementation concurrently
computes the prediction of every samples on multiple pa-
rameter K (up to the number of training set) of KNN. All
the source code are made public as mentioned before.

In experiments, we ran our implementation on Nvidia
Tesla T4 with CUDA 10.0 and the metric for KNN is
Euclidean distance. To compare the inference time of CPU
and GPU, we tested various algorithms and implementations
on the AwA2 dataset with all K ∈ (0, 5000]. The results are
shown in Table II.

Implementation Measure Sort Vote Total
CPU(sklearn, brute) / / / 42.6s*

CPU(sklearn, ball-tree) / / / 1189.5s*

CPU(sklearn, Kd-tree) / / / 1466.4s*

CPU(Numpy, brute) 3661.8s** 46.1s 240.9s** 3948.8**

GPU(PyCUDA, Tesla T4) 24.50s 5.31s 0.80s 30.61s
* Only for a single K.
** Estimated.

TABLE II
INFERENCE TIME OF DIFFERENT IMPLEMENTATIONS OF KNN

All the methods returned correct results. It is evident
that GPU significantly accelerated the computation of KNN.
Traditional CPU implementations spent 40× to 130× time of

GPU. However, the brute search method in Python sklearn
package also have surprisingly fast performance, only 2×
of GPU. This may be due to the C++ optimization of
sklearn kernel. So we are going to convert our PyCUDA
implementation to a fully C++ CUDA version in the future
to avoid Python code and further reduce the computing time.

C. Baseline: Simple Distance Metrics

We ran KNN on various simple distance metrics, including
Minkowski and cosine distance. For each case, we tried
hyper-perameter K from 1 to 2000 to select the best model
and a small part of their classification accuracy is shown in
Table III. The performance-K curves are shown in Figure 1.

K
Metric L1 L2 L∞ cos

1 84.95% 85.62% 72.24% 86.69%
2 84.09% 84.73% 71.07% 85.60%
3 86.62% 87.46% 73.99% 88.75%
4 86.23% 87.36% 75.26% 88.92%
5 86.88% 88.08% 76.23% 89.43%
6 86.75% 88.00% 76.20% 89.38%
7 87.18% 88.37% 76.80% 89.64%
8 86.86% 88.00% 76.92% 89.64%
9 86.99% 88.31% 76.66% 89.78%
10 86.86% 88.32% 76.59% 89.79%
11 87.03% 88.43% 76.59% 89.93%
12 86.70% 88.46% 76.56% 89.83%
13 86.85% 88.27% 76.49% 89.90%
14 86.68% 88.05% 76.56% 89.89%
15 86.62% 87.94% 76.46% 89.89%
50 83.60% 85.99% 73.94% 88.51%

100 81.24% 83.86% 71.15% 87.02%
200 77.75% 80.98% 68.06% 85.22%
500 70.67% 76.14% 62.12% 81.84%
1000 62.65% 71.43% 56.37% 78.59%
Best 87.18% 88.46% 76.92% 89.93%

TABLE III
RESULT OF SIMPLE DISTANCE METRICS

Fig. 1. Accuracy curve of simple distance metrics

All the performance curves are increasing first then de-
creasing and the best choices of K are mostly in the range
of 5 to 15. The worst metric is L∞ distance because it
only uses one dimension that has maximal value to represent
the whole vector. Unexpectedly, the best metric is cosine
distance although it seemingly omits the length information
of samples. We will comprehensively and thoroughly discuss
the advantages of cosine metric in subsection IV-A.

Besides, we also tried to z-score normalize the original
data to alleviate the heterogeneity of dimensions. Part of the

4

KNN classification performance after z-score normalization
is shown in Table IV and Figure 2.

K
Metric L1 L2 L∞ cos

1 83.50% 83.92% 61.53% 85.42%
2 82.20% 83.01% 60.53% 83.97%
3 84.98% 85.57% 63.68% 87.25%
4 84.76% 85.75% 65.16% 87.48%
5 85.26% 86.53% 66.17% 88.33%
6 85.10% 86.32% 66.37% 88.22%
7 85.52% 86.60% 66.50% 88.63%
8 85.22% 86.48% 66.84% 88.69%
9 85.38% 86.64% 67.22% 88.90%
10 85.02% 86.39% 67.17% 88.79%
11 85.04% 86.52% 67.44% 88.93%
12 84.82% 86.18% 67.21% 88.93%
13 84.93% 86.25% 67.10% 88.93%
14 84.72% 86.21% 67.24% 88.83%
15 84.62% 86.06% 67.35% 88.91%
16 84.55% 86.00% 67.36% 88.84%
17 84.36% 86.05% 67.30% 88.93%
50 81.36% 83.61% 64.61% 87.95%

100 78.42% 80.96% 61.40% 86.60%
200 73.50% 77.31% 57.71% 84.49%
500 64.33% 70.00% 51.08% 81.06%
1000 53.77% 62.36% 44.01% 77.65%
Best 85.52% 86.64% 67.44% 88.93%

Baseline 87.18% 88.46% 76.92% 89.93%

TABLE IV
RESULT OF SIMPLE DISTANCE METRICS WITH Z-SCORE NORMALIZATION

Fig. 2. Accuracy curve of simple distance metrics with z-score normal-
ization

Z-score normalization didn’t achieve higher accuracy as
expected. Instead, the accuracy dropped 1% or more after
normalization. The negative effect of z-score normalization
may be because AwA2 dataset is pre-extracted deep learning
features so its dimensions are not heterogeneous and z-score
normalization omits some important information.

D. Bregman Divergence

Unfortunately, the results of two variants of Bregman
Divergence, generalized KL Divergence and Itakura-Saito
distance, were very bad. In the KNN algorithm, regardless
of the value of K, the accuracy is a nearly 1.96%, which
is similar to random classifier. A possible reason is that the
features of AwA2 set do not have probabilistic semantics and
are not suitable for probability metric like divergence as the
distance metric in KNN algorithm.

E. Metric Learning
There are a lot of off-the-shelf codes for the popular metric

learning algorithms. However, most of them are based on
the whole training set and use only CPU, suffering from
limited memory and speed. Therefore, we implemented these
algorithms by ourselves using PyTorch, which helped us
in accelerating the calculation. And to solve the memory
problem, we introduced mini-batch strategy to the imple-
mentation. All the algorithm were optimized with RMSProp
with learning rate of 1e-4. We trained each model for 10
epochs on the training set with batch size of 500. All the
algorithms are evaluated on the testing set with KNN, using
different ks. Notice that all the algorithms were only used to
learning a Mahalanobis distance metric, though they could be
used to learn other metrics like cosine similarity. Since some
methods involves k in the training phase, to distinguish, we
use k to denote k in the training procedure, and K for that
in the testing phase.

1) LMNN: We trained our LMNN model with different
ks, and the evaluation results were best when k = 4. The
results are shown in Table V.

We can see it obviously improved the classification accu-
racy. Another interesting observation was that in this case
the best performance was not achieved when k = K,
though LMMN is aimed at optimizing the leave-one-out
cross validation accuracy for k-nearest neighbor classifier.
The reason is simple. Since enhancing the k nearest target
neighborhood relationship is also enhancing all the target
neighborhood relationship, LMNN with k could enhance
KNN classifiers’ performance regardless of K. To further
illustrate the influence of k, we also trained our model with
different ks. The results and observations will be shown in
subsection IV-B.

2) Contrastive Loss: In implementation, we didn’t use a
fixed margin. Instead, we used a strategy similar to subsub-
section II-C.4: we used the biggest distance between all the
similar pairs as margin. The results are shown in Table V. As
presented, the performance outperformed baseline obviously,
and the best performance was achieved approximately at the
similar k to baseline.

3) NCA: NCA aims to maximize f(A), which is the
expected number of points that correctly classified. Thus
we defined the loss as −f(A) for minimization. Due to
the original data scale could result in overflow, we first
performed L2 normalization on the data set before training
and testing. The results of different k in KNN is shown in
Table V.

4) Semi-Hard Mining Strategy: The results of different
k in KNN are shown in Table V. In our experiments, we
observed that even when the margin α was set to 0, the
model still had considerable performance.

5) Binomial Deviance: In our experiment, we did not use
a fixed hyper-parameter β. Instead, we used the biggest dis-
tance among positive pairs as β for negative pairs, and used
the smallest distance among negative pairs as β for positive
pairs. Thus, positive pairs which had smaller distance than
any negative pairs would be neglected. And α was set to 2 in

5

our implement. The results of different k in KNN are shown
in Table V.

6) Maximally Collapsing Metric Learning: Since the
computation procedure involved exponentiation, the original
distance scale could result in overflow. Therefore, the exper-
iments were performed after L2 normalization. The results
are shown in Table V. Besides the accuracy, we also plot the
distance distribution before and after the MCML in Figure 3.
Remind that the intuition of MCML is to project similar
samples to the same points and dissimilar samples to distant
points. From the small spike close to 0 in subsubsection III-
E.6, we can tell the algorithm achieved to approach the goal.

(a) Before MCML (b) After MCML
Fig. 3. Distribution of Euclidean distance before and after MCML

7) Comparison of metric learning methods: We list the
results of all the metric learning methods we implemented
in Table V.

K

A M
LMNN CL NCA SHS BD MCML

1 88.51% 88.54% 89.13% 90.56% 89.62% 88.31%
2 87.86% 88.01% 88.24% 89.56% 88.42% 87.80%
3 90.39% 89.96% 90.15% 91.45% 90.82% 89.99%
4 90.49% 90.37% 90.19% 91.47% 90.76% 90.41%
5 91.02% 90.80% 90.74% 92.10% 91.16% 90.82%
6 90.86% 90.74% 90.80% 91.83% 91.31% 91.05%
7 91.30% 90.97% 91.18% 92.02% 91.56% 91.24%
8 91.24% 91.09% 91.09% 92.01% 91.35% 91.20%
9 91.37% 91.14% 91.18% 91.96% 91.47% 91.25%
10 91.47% 91.08% 91.10% 92.13% 91.27% 91.30%
11 91.49% 91.06% 91.25% 92.01% 91.27% 91.35%
12 91.52% 91.10% 91.08% 92.04% 91.21% 91.35%
13 91.49% 91.13% 91.24% 92.03% 91.21% 91.36%
14 91.41% 91.02% 91.18% 92.07% 91.13% 91.37%
15 91.32% 91.02% 91.27% 92.07% 91.23% 91.24%
16 91.31% 90.97% 91.17% 91.94% 91.09% 91.22%

Best 91.52% 91.14% 91.27% 92.13% 91.56% 91.37%
Baseline 88.46%

TABLE V
RESULTS OF ALL THE METRIC LEARNING ALGORITHMS

All the methods managed to outperformed the simple
distance metric, revealing the effectiveness of task-dependent
Mahalanobis distance. And the whole procedure of all the
methods were finished within an hour, showing its efficiency.

Furthermore, semi-hard mining obviously outperformed
all the other methods. We figure that it is because for one
illegal pair, semi-hard mining punishes it multiple times,
while other methods only punish it one time. In other
words, it weights the loss of the illegal pairs that are harder
to rectify, while other methods treat all the illegal pairs
equally. Therefore, semi-hard mining tends to present a better
performance.

The methods involved in our project can be divided
into three different categories. LMNN, Contrastive loss and
Binomial deviance directly operate the distance; NCA and
MCML utilize the tools provided by information theory;
Semi-hard mining strategy actually is not a specified algo-
rithm but a margin choosing strategy that can be used by
other algorithms. However, in fact, these methods share the
same ultimate goal: minimizing the distances between similar
samples and maximizing the distances between dissimilar
samples. And these algorithms therefore might differ little
for this task, except for semi-hard mining, which introduces
inherit weights that can bring performance gain.

In addition, just as the dimensionality reduction methods
could be used for metric learning, all these methods could
also be applied to dimensionality reduction, which could be
an interesting field to research on.

F. Comprehensive Comparison

We plot all the methods we performed except Bregman
Divergence in Figure 4.

Fig. 4. Accuracy curve of all

We can see that for this task, cosine similarity performed
best among all the simple distance metrics. And metric learn-
ing methods were all proved to be effective and efficient in
accuracy improvement, especially semi-hard mining strategy.
Unfortunately, since the data don’t possess any probabilistic
semantics, the attempt of Bregman Divergence failed.

IV. FURTHER STUDY

A. Cosine Distance and L2 Normalization

In experiments, we found that cosine distance metric could
significantly enhance the KNN performance. Thus in this
subsection, we will thoroughly study the positive effect of
cosine distance, L2 normalization and its reasons. We’ll talk
about this topic step by step.

1) Equivalence of Cosine Distance and L2 Normalized
Euclidean Distance: Firstly, it can be proved that the cosine
distance and Euclidean distance with L2 normalization is
equivalent in distance comparison. Or formally, given three
samples x, y and z:

distcos (x,y) < distcos (x, z)

⇐⇒ disteucl (x̂, ŷ) < disteucl (x̂, ẑ) ,
(21)

6

where x̂ is the L2 normalized x:

x̂ =
x

‖x‖2
.

The proof is evident and also intuitive. The cosine distance
can be represented as:

distcos (x,y) =
1

2
(1− Simcos)

=
1

2

(
1− xTy

‖x‖‖y‖

)
=

1

2

(
1− x̂T ŷ

) ,

while L2 normalized Euclidean distance:

disteucl (x̂, ŷ) =

√
(x̂− ŷ)

T
(x̂− ŷ)

=

√
x̂T x̂ + ŷT ŷ − 2x̂T ŷ

=

√
2− 2x̂T ŷ

.

Therefore, we get:

disteucl (x̂, ŷ) = 2
√
distcos (x,y).

g(t) = 2
√
t is a monotonically increasing function defined

on [0,+∞), i.e. :

∀t1, t2 ∈ [0,+∞), t1 < t2 ⇐⇒ g(t1) < g(t2).

Therefore, based on this basic property of monotonic func-
tions, Equation 21 is proved.

2) Experiments of L2 Normalization: Now that we have
proved the equivalence of cosine distance and L2 normal-
ization, we conducted experiments on L2 normalization to
further prove our conclusion, as well as to ensure its positive
effect. We ran our KNN implementation on L2 normalized
AwA2 dataset and the best results among different K’s on
each metric are shown in Table VI.

K
Metric L1 L2 L∞ cos

1 86.56% 86.69% 73.35% 86.68%
2 85.59% 85.60% 72.20% 85.60%
3 88.24% 88.75% 75.62% 88.75%
4 88.02% 88.92% 76.52% 88.92%
5 88.81% 89.43% 77.43% 89.43%
6 88.63% 89.38% 77.78% 89.38%
7 88.95% 89.64% 78.03% 89.64%
8 88.87% 89.64% 77.99% 89.64%
9 89.13% 89.78% 78.19% 89.78%
10 88.93% 89.79% 78.19% 89.79%
11 89.00% 89.93% 78.16% 89.92%
12 88.93% 89.83% 78.02% 89.83%
50 87.20% 88.51% 76.35% 88.51%

100 85.23% 87.02% 74.15% 87.02%
200 82.77% 85.22% 71.08% 85.22%
500 78.32% 81.84% 66.48% 81.84%
1000 74.10% 78.59% 62.25% 78.59%
Best 89.13% 89.93% 78.19% 89.93%

Baseline 87.18% 88.46% 76.92% 89.93%

TABLE VI
RESULT OF SIMPLE DISTANCE METRICS WITH L2 NORMALIZATION

As expected, the performance of cosine distance and
L2 normalized Euclidean distance are identical, which has
been theoretically supported in subsubsection IV-A.1. And
not surprisingly, the performance of all distance metrics
(except cosine, because cosine distance is insensitive to
normalization) is enhanced by nearly 2%. Therefore, the
positive effect of cosine distance is actually the effect
of L2 normalization. We’ll discuss about L2 normalization
in the next part.

Since we observed the good performance of Cosine
Distance and the equivalence of Cosine Distance and L2
Normalized Euclidean Distance, we implemented a fur-
ther experiment on Semi-Hard Mining with data after L2
normalization. As was expected, the performance is much
better than the experiment using original data. The result
is shown in Figure 5. As we can see from the result, L2
normalization can not only enhance simple distance metric
but also metric learning. In other words, the enhancement of
L2 normalization has little overlap with that of Mahalanobis
distance.

Fig. 5. Result of Semi-Hard Mining using L2 norm

3) L2 Normalization: L2 normalization projects the orig-
inal samples to the unit hyper-sphere. Obviously, L2 normal-
ization is not a universally good pre-process of dataset. Take
Figure 6 as a simple example. After L2 normalization, the
two clusters in the example will overlap and be indivisible.

Fig. 6. Unsuitabilility of L2 Normalization

Besides, we also found that our distance distribution is
different from uniformly random samples. The skewness of
L2 normalized distance distribution is supposed to be 0 but
distance of our data set is negative skew. The comparison is
shown in Figure 7.

7

(a) AwA2 data set (b) Uniformly random data
Fig. 7. Distribution of L2 normalized distance of AwA2 and random data

Multiple clues have indicated that the effect of L2 nor-
malization depends on the distribution of data set. So we
did further experiments on randomly generated data with
Euclidean distance. We tested on the data set with different
dimensionality D and generated 10000 samples with 4
clusters for each D. 70% of data set are used as training
set and the rest is test set. The hyper-parameter K of KNN
is fixed at 5. The results are shown in Table VII.

D Euclid L2 normalized Euclid enhancement
2 93.55% 88.20% -5.35%
4 84.45% 83.30% -1.15%
8 83.60% 83.85% +0.25%

16 83.30% 80.95% -2.35%
32 68.65% 68.50% -0.15%
64 56.85% 58.20% +1.35%
128 48.35% 51.70% +3.35%
256 41.55% 42.85% +1.30%
512 35.55% 38.90% +3.35%

1024 33.35% 35.55% +2.20%

TABLE VII
EFFECT OF L2 NORMALIZATION ON RANDOM DATA

It’s interesting that, generally, L2 normalization have
positive effect on high dimensional data but negative
on low dimensional data, which corresponds with the
experiments results before because AwA2 data set is high
dimensional (2048). The reason is not clear yet. A reasonable
explanation is that high dimensional data tend to distribute
on a hyper-surface, hence L2 normalization are less likely
to damage the distribution and more possible to smooth the
distance distribution.

4) L1 normalization: After analyzing L2 normalization,
we are also curious about the effect of L1 normalization. L1
normalization of sample x is defined as:

x̃ =
x

‖x‖1
.

The best performance after L1 normalization is shown in
Table VIII. It can be observed that among all these simple
distance metrics, L1 normalization enhances L1 distance
(Manhattan distance) most significantly, by 1.7% compared
to L2 normalization. Naturally, we hypothesized that Lp
normalization can best enhance the performance of Lp
distance metric. To attain more clues of this hypothesis,
we did experiments on L3 distance and normalization. The
results are appended to Table VIII.

Although L3 normalization didn’t achieve the best accu-
racy on L3 distance (perhaps because Euclidean distance

Norm.
Metric L1 L2 L3

Baseline 87.18% 88.46% 87.12%
L1 Norm 90.88%(+3.70%) 90.01%(+1.55%) 88.22%(+1.10%)
L2 Norm 89.13%(+1.95%) 89.93%(+1.47%) 88.96%(+1.84%)
L3 Norm 87.02%(-0.16%) 88.48%(+0.02%) 87.98%(+0.86%)

TABLE VIII
RESULT OF SIMPLE DISTANCE METRICS WITH L1 NORMALIZATION

greatly outperform other metrics), it achieved maximum gain
on L3 distance compared to baseline while it decreased the
accuracy of L1 and L2 distance metrics, which partly corre-
sponds to the hypothesis. The research on this phenomenon
could also be interesting.

B. LMNN and k

Among all the algorithms we discussed, LMNN is the
only one involving k as a parameter. We’ve seen that when
k = 4, the best performance was not achieved by K = 4, and
simply discussed the relationship between k and K. We want
to explore on how k influence the performance of LMNN. To
illustrate this, we trained and evaluated LMNN with different
Ks. The results are shown in Table IX. To be more ocular, we
also plot the accuracy of different LMNN models in Figure 8.

As shown, k had a strong relation to the classification

K
k 1 2 4 8 16

1 88.20% 88.29% 88.51% 88.18% 87.65%
2 87.51% 87.76% 87.86% 87.86% 86.91%
3 90.03% 90.30% 90.39% 89.95% 89.16%
4 89.95% 90.31% 90.49% 90.09% 89.22%
5 90.70% 90.92% 91.02% 90.62% 89.72%
6 90.50% 90.97% 90.86% 90.60% 89.64%
7 90.93% 91.27% 91.30% 91.12% 90.05%
8 90.82% 91.14% 91.24% 90.92% 89.96%
9 91.10% 91.27% 91.37% 91.08% 90.15%
10 91.08% 91.21% 91.47% 90.96% 90.19%
11 91.20% 91.32% 91.49% 91.16% 90.29%
12 91.10% 91.30% 91.52% 91.07% 90.05%
13 91.23% 91.35% 91.49% 91.12% 90.14%
14 91.27% 91.37% 91.41% 91.09% 90.11%
15 91.17% 91.37% 91.32% 91.21% 90.11%
16 91.20% 91.27% 91.31% 91.08% 90.01%

Best 91.27% 91.37% 91.52% 91.21% 90.29%

TABLE IX
RESULT OF LMNN WITH DIFFERENT k

Fig. 8. LMNN accuracy curve

accuracy. Here we try to explain how the connection worked.

8

The goal of LMNN is to optimize the leave-one-out cross-
validation accuracy when k = K, but we can see the best
performance was never achieved when k = K. It might tell
us the choice of k doesn’t have much connection with the
testing phase. Then what role does k play? We can see that
the best performance was achieved when k = 4, and there
was a huge performance gap between k = 16 and others.
We think it was related to our setting of batch size. In our
data set, there are 50 different labels. With a batch size of
500, every sample has have about 9 target neighbors in a
batch. If k was close to 9 or bigger than 9, the supervision
we imposed on different classes could be imbalanced since
some classes might not have enough target neighbors to
supervise with, which finally resulted in relatively poor
performance. Therefore, k somewhat implicates the intensity
of the supervision we impose on our model. And its choice
should be considered with attention to the size of data set
(or the mini-batch).

C. Experiments of Semi-Hard Mining Lite

The original paper for Semi-Hard Mining Strategy[4] also
used a simplified model, in which only the maximum of
positive pairs and the minimum of negative pairs would
be taken into account for optimization. We implemented an
experiment to explore this model further and it was observed
that the lite version of Semi-Hard Mining didn’t perform as
well as the full version (comparing every two of positive and
negative pairs). The result is shown in Figure 9.

Fig. 9. Result of Semi-Hard Mining Lite

We attributed the different performance between the full
version of Semi-Hard Mining and the lite version to the
number of pairs that would be optimized in the model, for
the lite version only optimized the maximum of positive pairs
and the minimum of negative pairs. Thus the advantage of
Semi-Hard over other metric learning method is the large
number of pairs of distance that is optimized.

V. CONCLUSION

In this project, we evaluated different distance metrics
on the given data and analyzed their performance, then
we used several metric learning algorithms to improve the
performance, and went through some algorithms’ details.
Furthermore, considering the close connection between nor-
malization and distance, we performed some exploratory
experiments and gave our analysis. Finally, we try to give

some general advice. First, simple distance metrics are good
choices, providing feasible performance and great generality.
Second, Lp normalization might enhance the representational
ability of the distance under some certain circumstances.
Third, metric learning is great if a task-dependent metric
is needed. Fourth, divergence shouldn’t be used for non-
probabilistic situation.

REFERENCES

[1] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning
for large margin nearest neighbor classification. Journal of Machine
Learning Research, 10(Feb):207–244, 2009.

[2] Raia Hadsell, Sumit Chopra, and Yann Lecun. Dimensionality reduction
by learning an invariant mapping. pages 1735 – 1742, 02 2006.

[3] Jacob Goldberger, Geoffrey E Hinton, Sam T. Roweis, and Ruslan R
Salakhutdinov. Neighbourhood components analysis. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information
Processing Systems 17, pages 513–520. MIT Press, 2005.

[4] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet:
A unified embedding for face recognition and clustering. CoRR,
abs/1503.03832, 2015.

[5] Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata.
Zero-shot learning - A comprehensive evaluation of the good, the bad
and the ugly. CoRR, abs/1707.00600, 2017.

[6] L.M. Bregman. The relaxation method of finding the common point of
convex sets and its application to the solution of problems in convex
programming. USSR Computational Mathematics and Mathematical
Physics, 7(3):200 – 217, 1967.

[7] Prasanta Chandra Mahalanobis. On the generalized distance in statistics.
Proceedings of the National Institute of Sciences (Calcutta), 2:49–55,
1936.

[8] Amir Globerson and Sam T. Roweis. Metric learning by collapsing
classes. In NIPS, 2005.

[9] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul
Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL: A Scripting-Based
Approach to GPU Run-Time Code Generation. Parallel Computing,
38(3):157–174, 2012.

9

	INTRODUCTION
	METHOD
	KNN and CUDA Implementation
	Simple Distance Metrics
	Minkowsky distance
	Cosine similarity and its variants
	Divergences

	Metric Learning
	Large Margin Nearest Neighbor
	Contrastive Loss
	Neighbourhood Components Analysis
	Semi-Hard Mining Strategy
	Binomial Deviance Loss
	Maximally Collapsing Metric Learning

	Experiment
	Data Set
	CUDA Implementation of KNN
	Baseline: Simple Distance Metrics
	Bregman Divergence
	Metric Learning
	LMNN
	Contrastive Loss
	NCA
	Semi-Hard Mining Strategy
	Binomial Deviance
	Maximally Collapsing Metric Learning
	Comparison of metric learning methods

	Comprehensive Comparison

	Further Study
	Cosine Distance and L2 Normalization
	Equivalence of Cosine Distance and L2 Normalized Euclidean Distance
	Experiments of L2 Normalization
	L2 Normalization
	L1 normalization

	LMNN and k
	Experiments of Semi-Hard Mining Lite

	Conclusion
	References

