
Project 2: KNN with Different Distance Metrics
Xu Jiayi , Gao Yifeng, Tang Qidong, Bi Wendong

I. KNN
K-Nearest Neighbors is one of the most basic yet essential
classification algorithms in Machine Learning. It is a non-
parametric, lazy and supervised learning algorithm [1] . In this
project, KNN serves as the classifier for image classification,
in which we explore the effect of distance metrics.

Non-parametric means that it does not make any assump-
tions on the underlying data distribution. It is a good property
because most of the data in the real world does not obey
the typical theoretical assumptions (as in linear regression
models, for example). A type of lazy learning algorithm means
that off-line training is not needed. In test phase, the KNN
classifier directly searches through all the training examples
by respectively calculating their distances between the testing
example in order to identify the testing example’s nearest
neighbors and produce the classification output.

II. Distance Metrics
In KNN, the distance between two data points is decided

by a similarity measure (or distance function) where the
Euclidean distance is the most widely used distance function.
However, the real world dataset such as the AwA2 in this
project is not always Euclidean and we believe some other
distance metrics may perform better in particular circumstance.

A. Mahalanobis Distance

The Mahalanobis distance [2] is the distance between two
points in multivariate space. Mahalanobis distance takes into
account the correlations of the dataset, and is thus unitness
and scale-invariant. The Mahalanobis distance is defined as a
dissimilarity measure between two random vector ~X and ~Y
of the same distribution with the covariance matrix Σ:

d(~X, ~Y) =

√
(~X − ~Y)T Σ−1(~X − ~Y) (1)

In particular, as Σ is a unit matrix, Mahalanobis distance is
degenerated into Euclidean distance.

The Mahalanobis distance has the following properties:
• It accounts for the fact that the variances in each direction

are different.
• It accounts for the covariance between variables.

B. Minkowski Distance

The Minkowski distance [3] is a metric measured in a
normalized vector space. It is a generalized metric distance

defined as :

d(~X, ~Y) =
(

(~X − ~Y)p
)1/p

=

(
n∑

i=1

|xi − yi|p
)1/p

For different value of p, Minkowski distance has different
particular meanings [3].

1) Manhattan Distance
As p = 1, Minkowski distance is specific to Manhattan
distance.

d(~X, ~Y) = |(~X − ~Y)| =
n∑

i=1

|xi − yi|

Manhattan distance is the distance between two points
measured along axes. As shown in the left half of Fig. 1,
three routes from origin to destination are the same
long. Manhattan distance is also known as the L1 norm
illustrated in the right half of Fig. 1.

Fig. 1. Illustration of Manhattan Distance / L1 norm

2) Euclidean Distance
As p = 2, Minkowski distance is specific to Euclidean
distance.

d(~X, ~Y) =

√
(~X − ~Y)2 =

√√√√ n∑
i=1

|xi − yi|2

Euclidean distance [4] is the “ordinary” straight-line
distance between two points in Euclidean space. The
Euclidean distance between points X and Y is the length
of the line segment connecting them, which is also
known as the L2 norm illustrated in Fig. 2.

3) Chebyshev Distance
As p =∞, Minkowski distance is specific to Chebyshev
distance.

d(~X, ~Y) = max
i

(|xi − yi|)

Chebyshev distance [5] between two vectors is the great-
est of their differences along any coordinate dimension.

Fig. 2. Illustration of Euclidean Distance / L2 norm

As shown in the left half of Fig. 3, all 8 adjacent cells
from the given point can be reached by one unit, so
Chebyshev distance is also called chessboard distance.
It is also known as the L∞ norm illustrated in Fig. 3.

Fig. 3. Illustration of Chebyshev Distance / L∞ norm

C. Cosine Distance

Cosine distance [6] is a measure of similarity between two
non-zero vectors within an inner product space that measures
the cosine of the angle between them. Given two vector ~X
and ~Y , Cosine distance is defined as:

d(~X, ~Y) =
~X · ~Y
|| ~X||||~Y ||

=

∑n
i=1XiYi√∑n

i=1X
2
i

√∑n
i=1 Y

2
i

Cosine similarity is always used to measure how similar
the documents are irrespective of their size. It is advantageous
because even if the two similar documents are far apart by the
Euclidean distance (due to the size of the document), chances
are they may still be oriented closer together. The smaller the
angle, higher the cosine similarity. However, cosine distance
is not suitable in this project which we will discuss detailly
later.

III. Metric Learning
When two different samples are alike, we can use the

Distance Metrics described above to distinguish them. But
what if two samples are heterogeneous? Here comes Metric
Learning Methods. In thoughts of Metric Learning, we first

use a projection metric P to project two different samples, for
example x and y, into common space:

dist(x, y) → dist(Px, Py) (2)

We then calculate the distance in such common space:

dist(Px, Py) = ||Px− Py|| =
√

(xT − yT)PTP (x− y)
(3)

We donate the metric PTP as M , and then we use metric
learning methods to learn this metric. Finally it equals to
compute the Mahalanobis distance of x and y, and we need to
learn its covariance metric donated by M .

distM (x, y) = dist(Px, Py) =
√

(xT − yT)M(x− y) (4)

Next we need to set a goal of learning M to enhance cluster
coherence and separation. Different metric learning methods
have different goal and constraints. Here we will introduce 9
metric learning methods as follows.

A. Large Margin Nearest Neighbor (LMNN)

LMNN [7] learns a Mahalanobis distance metric in the
KNN classification settings using semi-definite programming
method. The learned metric attempts to keep k-nearest
neighbors in the same class, while keeping examples from
different classes separated by a large margin. This algorithm
makes no assumptions about the distribution of the data.

min
∑
ij

nij(xi −−→xj)TM(xi − xj)T + c
∑
ij

nij(1− yij)ξijl

s.t.(xi − xl)
TM(xi −xl)− (xi − xj)TM(xi − xj)

≥ 1− ξijl
ξijl ≥ 0
M � 0

B. Neighbourhood Components Analysis (NCA)

NCA Algorithm [8] is to maximize the objective function
Eq. (5) using a gradient based optimizer such as deltabar-delta
or conjugate gradients.

qij =
exp(−||Pxi − Pxj ||2)∑
k 6=i exp(−||Pxi − Pxk||2)

, pii = 0;

pi =
∑
j∈Ci

pij

f(P) =
∑
i

pi (5)

Of course, since the cost function is not convex, some care
must be taken to avoid local maximum during training. We
compute g(P) in Eq. (6) instead of f(P).

g(P) =
∑
i

log(pi) (6)

C. Local Fisher Discriminant Analysis (LFDA)

LFDA [9] is a linear supervised dimensionality reduction
method. It is particularly useful when dealing with multi-
modality, where one ore more classes consist of separate
clusters in input space. The core optimization problem of
LFDA is solved as a generalized eigenvalue problem.

let S(w) and S(b) be the within-class scatter matrix and the
between-class scatter matrix defined by

S(w) =

l∑
i=1

∑
j:yj=i

(xj − µi)(xj − µi)
T (7)

S(b) =

l∑
i=1

ni(µi − µ)(µi − µ)T (8)

Then the FDA transformation matrix TFDA is defined as
follows:

TFDA = arg max
T∈Rd×m

tr[(TTS(w)T)−1TTS(b)T] (9)

By this way, T is determined so that between-class scatter is
maximized while within-class scatter is minimized. It’s known
that TFDA is given by

TFDA = (φ1|φ2| · · · |φm) (10)

where {φi}di=1 are the generalized eigenvectors associated to
the generalized eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd of the
following generalized eigenvalue problem:

s(b)φ = λS(w)φ (11)

D. Metric Learning for Kernel Regression (MLKR)

MLKR is an algorithm of supervised metric learning, which
learns a distance function by directly minimizing the leave-
one-out regression error. This algorithm can also be viewed
as a supervised variation of PCA and can be used for dimen-
sionality reduction and high dimensional data visualization.

The MLKR consists of setting initial values of θ, and then
adjusting the values using a gradient descent procedure

∆θ = −ε∂L
∂θ

where ε is an adaptive step-size, and the loss function L is the
cumulative leave-one-out quadratic regression error:

L =
∑
i

(yi − ŷi2)

ŷi =

∑
j 6=i yjkij∑
j 6=i kij

kij =
1

σ
√

2π
e−

d(−→xi,
−→xj)

σ2

d(−→xi ,−→xj) = (−→xi −−→xj)T M (−→xi −−→xj) (12)

M = ATA

where the ith row of A is the vector
√
λi
−→vi T . Where −→vi is

the ith eigenvector and λI is the ith eigenvalue.

E. Information Theoretic Metric Learning (ITML)

ITML [10] is a semi-supervised learning approach. It mini-
mizes the differential relative entropy between two multivariate
Gaussians under constraints on the distance function, which
can be formulated into a Bregman optimization problem by
minimizing the LogDet divergence subject to linear con-
straints.

The objective function of ITML is shown as follows:

min KL(p(x;M0)||p(x;M))

s.t. dM (xi, xj)≤ u, (xi, xj) ∈ S
dM (xi, xj)≥ l, (xi, xj) ∈ D

In the objective function above, M represents the metric
to be learned, M0 represents the prior metric. Two points
are considered similar if the Mahalanobis distance between
them is smaller than a given upper bound, i.e., a relatively
small value u; two points are considered dissimilar if the
Mahalanobis distance between them is larger than a given
lower bound, i.e., a sufficiently large value l. S represents
all pairs of similar points and D represents all pairs of
dissimilar points. The objective function is to minimize the
KL divergence between M and M0 to avoid overfitting, and
make the learned metric M to satisfy the threshold.

Since the ”closeness” between M and M0 is measured
via KL divergence, this method measures the difference
between two distributions in an entropy perspective. Therefore,
this metric learning method is called an information-theoretic
approach.

F. Least Squares Metric Learning (LSML)

LSML [11] is a simple, yet effective algorithm. It learns a
Mahalanobis metric from a given set of relative comparisons.
This is done by formulating and minimizing a convex loss
function that corresponds to the sum of squared hinge loss of
violated constraints.

Suppose X = [x1, · · · ,xn] is the set of data points. A set
of relative comparisons is given in the the form of:

C = {(xa,xb,xc,xd) : d(xa,xb) < d(xc,xd)} (13)

The loss for each comparison d(xa,xb) < d(xc,xd) is
defined as:

L(d(xa,xb) < d(xc,xd)) = H(dM (xa,xb)− dM (xc,xd))
(14)

, where H(·) is the squared hinge function defined as:

H(x) =

{
0 if x ≤ 0

x2 if x > 0
(15)

The loss function is easy to understand because dM (xa,xb)−
dM (xc,xd) ≤ 0 means that the comparison relationship
between xa, xb, xc, xd remains correct in the projected space,
while dM (xa,xb) − dM (xc,xd) > 0 means the projection
matrix M makes mistakes which should suffer a loss.

The summed loss function for all constraints (comparisons)
is as:

L(C) =
∑

(xa,xb,xc,xd)∈C

ωa,b,c,dH(dM (xa, xb)− dM (xc, xd))

=
∑

(xa,xb,xc,xd)∈C

ωa,b,c,dH(
√

(xa − xb)TM(xa − xb)

−
√

(xc − xd)TM(xc − xd)

G. Sparse Determinant Metric Learning (SDML)

SDML [12] exploits the sparsity nature underlying the
intrinsic high dimensional feature space to do metric learning.
The sparsity prior of learning distance metric serves to reg-
ularize the complexity of the distance model, so that it only
requires a smaller number of examples to learn a well posed
metric from the perspective of machine learning theory

We can minimize the off-diagonal l1−norm:

||M ||1,off =
∑
i 6=j

|Mi,j | (16)

to pursue a sparse solution.
We can minimize the log-determinant divergence function:

Dg(M ||M0) = tr(M−1
0 M)− logdetM (17)

where M0 is a prior. In this way, the Mahalanobis matrix M
will be regularized as close as possible to the prior M0.

We can minimize the loss function defined on sets of
similarity S and dissimilarity D:

L(S,D) =
1

2

n∑
i,j=1

||ATxi −ATxj ||2Ki,j

=

n∑
i,j=1

(xTi AATxi − xTi AATxj)Ki,j

=

n∑
i,j=1

(xTi Mxi − xTi Mxj)Ki,j

Ki,j =

{
1, if (xi, xj) ∈ S
− 1, if (xi, xj) ∈ D

(18)

where K is a matrix which encodes the similarity and dis-
similarity information. This loss function is meant to maintain
the similarity information in the projected space.

Therefore, the overall objective function of SDML is:

min tr(M−1
0 M)− logdetM + λ||M ||1,off + ηL(S,D)

s.t. M is a positive semi-definite constraint.

where λ is a balancing parameter trading off between sparsity
and the M0 prior, η is a positive balance parameter trading
off between the loss function and the regularizer (sparsity and
prior).

H. Relative Component Analysis (RCA)

RCA [13] learns a full rank Mahalanobis distance metric
based on a weighted sum of in-class covariance matrices. It
applies a global linear transformation to assign large weights to
relevant dimensions and low weights to irrelevant dimensions.
Those relevant dimensions are estimated using chunklets,
subsets of points that are known to belong to the same class.

RCA follows the idea of [14], which states that when an
input X is transformed into a new representation Y , we should
seek to maximize the mutual information I(X,Y) between
X and Y under suitable constraints.

Suppose the original data points are {xj,i}
k , nj
j=1,i=1, and the

transformed data points are {yj,i}
k , nj
j=1,i=1. The problem can be

formed as:

max I(X,Y)

s.t.
1

p

k∑
j=1

nj∑
i=1

||yji −my
j ||

2 ≤ K

where my
j denotes the mean of points in chunklet j after

the transformation, P denotes the total number of points in
chunklets, and K is a constant.

I. Mahalanobis Metric Learning for Clustering (MMC)

MMC [15] minimizes the sum of squared distances between
similar examples, while enforcing the sum of distances be-
tween dissimilar examples to be greater than a certain margin.
This leads to a convex and, thus, local-minima-free opti-
mization problem that can be solved efficiently. However, the
algorithm involves the computation of eigenvalues, which is
the main speed-bottleneck. Since it has initially been designed
for clustering applications, one of the implicit assumptions of
MMC is that all classes form a compact set, i.e., follow a
unimodal distribution, which restricts the possible use-cases
of this method. However, it is one of the earliest and a still
often cited technique.

MMC adopts a quite simple criterion for the desired metric.
Suppose we have some set of points {xi}mi=1, and then we can
have 2 sets:

S : (xi, xj) ∈ S if xi and xj are similar (19)

D : (xi, xj) ∈ S if xi and xj are dissimilar (20)

MMC demands that pairs of points (xi, xj) in S have
small squared distance between them, so that we have the
objective function: minimizeA

∑
(xi,xj)∈S

||xi − xj ||2A (A is

the parameter to transform points). This objective function is
trivially solved with A =, which is not useful, so a constraint
is added:

∑
(xi,xj)∈D

||xi − xj ||2A ≥ 1. Therefore, the objective

function of MMC is:

min
∑

(xi,xj)∈S

||xi − xj ||2A

s.t.
∑

(xi,xj)∈D
||xi − xj ||2A ≥ 1

A is positive semi-definite

IV. Experiments
In this section, we will introduce the details about the

experiment procedure, and the results of different methods will
be displayed and compared.

A. About the Dataset

The dataset we use is Animals with Attributes (AwA2)
dataset, which consists of 37322 images of 50 animals classes.
The features we use for training are pre-extracted deep learn-
ing features.

B. Select the k Values of the Classifier

As a hyper parameter, the number of neighbors k sig-
nificantly affect the performance of the KNN classifier on
different feature space.

To decide the proper magnitude k, we use the features
after PCA dimension reduction (to reduce the time complexity,
especially when k is relatively large) and try different value
of k. The further experiment also shows that PCA does not
do much harm to the performance of the KNN classifier.

TABLE I
ACCURACY ON DIFFERENT k VALUES (PCA DIMENSION: 50)

Metric
k 2 4 8 16 32 64

Euclidean 0.855 0.882 0.891 0.891 0.883 0.869
Manhattan 0.850 0.879 0.889 0.887 0.878 0.865
Chebyshev 0.822 0.856 0.864 0.866 0.858 0.843

The result shows that a relatively small value of k leads to
a better performance.

An intuitive explanation to the result is that the KNN
classifier need the nearest neighbor information to distinguish
cluster properly. If k is too large, a new datapoint will easiler
face the situation that its k nearest neighbors are from mixed
classes, make the classification unclear.

Hence in the following experiments, we select the values of
k in a smaller interval.

C. PCA’s Effect on the Performance

Unless the dimension after PCA is too small, most of the
information in the feature vector remains, especially partial
order relation between distances among pairs of feature points.
Hence KNN classifier’s performance should not be affected
too much if reasonable PCA dimension reduction is added.

The experiment also gives the same conclusion. compare
to the original dimension (2048), 50 dimensions and 300

Fig. 4. Accuracy on different dimensions

dimensions after PCA have similar performances, or even
better than the original feature space.

TABLE II
ACCURACY ON DIFFERENT PCA DIMENSIONS

Metric/Dim
k 2 4 8

Euclidean/50 0.855 0.9882 0.891
Euclidean/300 0.863 0.885 0.893

Euclidean/No PCA 0.863 0.0.885 0.891
Manhattan/50 0.850 0.879 0.889

Manhattan/300 0.844 0.870 0.872
Manhattan/No PCA 0.845 0.870 0.889

Chebyshev/50 0.822 0.856 0.864
Chebyshev/300 0.824 0.859 0.867

Chebyshev/No PCA 0.825 0.858 0.866

D. Distance Metrics

A few common distance metrics are tested in the KNN
experiment, including Euclidean distance, Manhattan distance
and so on.

1) Minkowski Distance Metrics: Euclidean and Manhattan
distance have a slightly better performance over Chebyshev
distance.

A possible reason is that Chebyshev distance only keep the
distance which is largest among all the dimensions, hence
losing much information, while Euclidean and Manhattan
distance reserve distance information in all dimensions.

TABLE III
ACCURACY ON MINKOWSKI DISTANCE METRICS (NO PCA)

Metric
k 2 3 4 5 6 7 8

Euclidean 0.863 0.888 0.885 0.890 0.891 0.893 0.891
Manhattan 0.845 0.869 0.870 0.874 0.873 0.873 0.889
Chebyshev 0.825 0.855 0.858 0.864 0.865 0.867 0.866

2) Other Distance Metrics: In fact, the cosine similarity, as
a distance metric, is also tested in the KNN experiment, but

with a extremely poor performance (with an accuracy lower
than 1%).

An explanation is that cosine similarity regard the features
space as a high-dimensional sphere, and all data points are
projected to the surface of the sphere. The projection loses
the information about the distance between the Origin point
and the data point, only the direction remains.

The aftermath is, if multiple classes of data is in the similar
directions in the high dimensional feature space but have
different distances to the origin point, the cosine similarity will
finds them overlapped and unable to give a clear classification.

E. Metric Learning Methods

Some metric learning methods are supervised that need
labels to learn a projection matrix from the original feature
space to the new feature space while some are unsupervised
methods (e.g. covariance matrix) that do not need additional
labels or information.

However, some weakly-supervised metric learning methods
requires additional information about the dataset. For exam-
ple, weakly-supervised SDML demands a connectivity graph
between pairs of feature points, which is not available in our
dataset.

Hence we experiment on the methods whose requirements
do not exceed the labels of the dataset.

1) Covariance Matrix: Often regarded as a baseline of
metric learning, this method does not ”learn” anything, rather
it calculates the covariance matrix of the input data [2].

After the projection the covariance in each dimension is
scale-invariant, and correlations between dimensions are re-
moved.

However, the scale-invariant property can introduce a prob-
lem: some the information in some dimensions is actually not
as important as others, but the projection use covariance matrix
ignore this possibility and exaggerate their importance.

The results shows that covariance matrix method have a
worse performance than just using euclidean distance metric.

TABLE IV
ACCURACY ON COVARIANCE MATRIX METRIC LEARNING

k 2 3 4 5 6 7 8
CM 0.748 0.763 0.761 0.758 0.753 0.748 0.878

Euclidean 0.863 0.888 0.885 0.890 0.891 0.893 0.891

2) LMNN: LMNN uses labels information to learn a Ma-
halanobis distance metric that keep samples from different
classes separated by a large margin [7].

In our dataset, LMNN performs slightly better than barely
using Euclidean distance.

TABLE V
ACCURACY ON LMNN METRIC LEARNING

k 2 3 4 5 6 7 8
LMNN 0.864 0.891 0.894 0.899 0.899 0.903 0.886

Euclidean 0.863 0.888 0.885 0.890 0.891 0.893 0.891

3) LFDA: LFDA’s main advantages is to deal with the
situation that classes may consist of more separated classes
[9].

The results shows that the performance with LFDA and
without LFDA (Euclidean distance metric) is similar, which
indicates than mutli-clusters classes may be rare in our dataset.

TABLE VI
ACCURACY ON LFDA METRIC LEARNING

k 2 3 4 5 6 7 8
LFDA 0.874 0.894 0.893 0.897 0.897 0.899 0.891

Euclidean 0.863 0.888 0.885 0.890 0.891 0.893 0.891

4) LSML: LSML try to keep the partial order relationship
in the original features space when learning the new feature
representation [11].

However, in our experiment, the new representation has a
lower performance on the problem.

Maybe that’s because the distance between xa and xb

measured by d(xa,xb) cannot represent the actual relation-
ship between xa and xb. For example, we adopt euclidean
distance to calculate the distance between 2 data points, but
the dataset appears to have a ”Swiss roll” pattern, thus the
relative comparison got from euclidean distance is wrong.
Then, maintaining the incorrect distance information in the
new distance space will have bad effect on the classification
accuracy. In addition, we are supposed to use metric learning
to discover the hidden pattern of the dataset, rather than follow
the relationship from the original distance space. LSML just
changes a distance representation, and cannot guarantee high
classification accuracy.

TABLE VII
ACCURACY ON LSML METRIC LEARNING

k 2 3 4 5 6 7 8
LSML 0.754 0.771 0.769 0.768 0.763 0.760 0.868

Euclidean 0.863 0.888 0.885 0.890 0.891 0.893 0.891

5) SDML Supervised: SDML use sets of similarity S and
dissimilarity D as weak-supervised information to increase the
distance between dissimilar samples and decrease the similar
samples’ distance [12].

To use the approach as a supervised algorithm, we just use
the labels as a standard to differentiate: different classes means
dissimilarity while sample class indicates similarity.

The result shows that the performance is worse than eu-
clidean distance metric in our dataset.

From our point of view, there exist two reasons why SDML
performs worse than Euclidean distance. First, SDML requires
a prior Mahalanobis matrix M0. The choice of M0 will influ-
ence the final classification accuracy. Second, SDML pursues
a sparse solution, so that it may perform better than other
distance metrics when using a smaller number of examples.
However, when we have relatively sufficient examples, SDML
cannot guarantee performing better.

TABLE VIII
ACCURACY ON SDML SUPERVISED METRIC LEARNING

k 2 3 4 5 6 7 8
SDML 0.770 0.817 0.811 0.840 0.834 0.830 0.802

Euclidean 0.863 0.888 0.885 0.890 0.891 0.893 0.891

6) RCA Supervised: RCA maximize the mutual informa-
tion I(X,Y) between the original representation X and new
representation Y [13].

Weakly-supervised RCA algorithm need give the informa-
tion that groups several points into chunklets. For we have the
labels, points in the same classes can be grouped into the same
chunklets.

TABLE IX
ACCURACY ON RCA SUPERVISED METRIC LEARNING

k 2 3 4 5 6 7 8
RCA 0.837 0.860 0.860 0.866 0.866 0.873 0.869

Euclidean 0.863 0.888 0.885 0.890 0.891 0.893 0.891

F. t-SNE visualization

A Mahalanobis distance metric in KNN classifier can be
regard as a projection matrix from the original feature space
to new feature space plus a Euclidean distance metric.

To give a clear visual comparison difference feature space
after the projection with some metric learning methods. We
implement t-SNE dimension reduction to show the data point
in two dimension figures.

Fig. 5. t-SNE on the original feature space

Fig. 6. t-SNE on the LMNN projected feature space

LMNN splits the clusters a bit more separately than the
original feature space, which may benefit the performance of
the KNN classifier.

Fig. 7. t-SNE on the LFDA projected feature space

Fig. 7 shows that different clusters are far from each other
and the each cluster shrinks down to a smaller size, indicating
that LFDA method indeed maximizes the between-class scatter
and minimize the within-class scatter.

G. Overview

After testing some metric learning, we find that some meth-
ods work well on our dataset, and give a better performance
over the common distance metrics.

However, some distance methods perform worse than the
common distance metrics like Euclidean distance metric. In-
stead of regard them as helpless, we think that those methods
are not so suitable for the dataset, because they are often

designed to solve specific problems that common distance
metric can not deal with well, for instance, if samples in the
same classes are in separated clusters, LFDA is much better
than Euclidean distance metric.

TABLE X
BEST ACCURACY ON EACH METHOD

Metric Accuracy k

Euclidean 0.893 7
Manhattan 0.889 8
Chebyshev 0.867 7

Covariance Metric 0.878 8
LMNN 0.903 7
LFDA 0.899 7
LSML 0.868 8
SDML 0.840 5
RCA 0.873 7

V. Conclusion
In this project, we use KNN to classify the AwA2 dataset

with different distance metrics. We use K-fold to do cross
validation, PCA to do dimension reduction (without losing
performance). Altogether, we try 4 different distance metrics,
Euclidean distance, Manhattan distance, Chebyshev distance,
and Mahalanobis distance.

We implement 6 metric learning methods: covariance met-
ric, LMNN, LFDA, LSML, SDML and RCA to learn new
feature representations, which can be used as a Mahalanobis
distance metric. We find that some metric learning methods
such as LMNN and LFDA can actually learn a better repre-
sentation of the feature space, which improves the accuracy of
KNN classifier. We use t-SNE to visualize the learnt feature
representation, and we can see that LMNN and LFDA can
learn a feature space which separate different clusters and
shrink them.

In conclusion, Euclidean distance is a quite simple yet
well-performed distance metric. In addition, with appropriate
metric learning method, we can improve the the feature space
and benefit the follow-up tasks, such as classification.

REFERENCES

[1] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning
approach to multi-label learning,” Pattern Recognition, vol. 40,
no. 7, pp. 2038 – 2048, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320307000027

[2] R. D. Maesschalck, D. Jouan-Rimbaud, and D. Massart, “The
mahalanobis distance,” Chemometrics and Intelligent Laboratory
Systems, vol. 50, no. 1, pp. 1 – 18, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169743999000477

[3] A. Singh, A. Yadav, and A. Rana, “K-means with three different distance
metrics,” International Journal of Computer Applications, vol. 67,
no. 10, 2013.

[4] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics
and image processing, vol. 14, no. 3, pp. 227–248, 1980.

[5] S.-H. Cha, “Comprehensive survey on distance/similarity measures
between probability density functions,” City, vol. 1, no. 2, p. 1, 2007.

[6] G. Qian, S. Sural, Y. Gu, and S. Pramanik, “Similarity between euclidean
and cosine angle distance for nearest neighbor queries,” in Proceedings
of the 2004 ACM symposium on Applied computing. ACM, 2004, pp.
1232–1237.

[7] K. C. Assi, H. Labelle, and F. Cheriet, “Modified large margin near-
est neighbor metric learning for regression,” IEEE Signal Processing
Letters, vol. 21, no. 3, pp. 292–296, 2014.

[8] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov,
“Neighbourhood components analysis,” in Advances in neural informa-
tion processing systems, 2005, pp. 513–520.

[9] M. Sugiyama, “Dimensionality reduction of multimodal labeled data by
local fisher discriminant analysis,” Journal of machine learning research,
vol. 8, no. May, pp. 1027–1061, 2007.

[10] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proceedings of the 24th international
conference on Machine learning. ACM, 2007, pp. 209–216.

[11] E. Y. Liu, Z. Guo, X. Zhang, V. Jojic, and W. Wang, “Metric learning
from relative comparisons by minimizing squared residual,” in 2012
IEEE 12th International Conference on Data Mining. IEEE, 2012, pp.
978–983.

[12] G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang, “An efficient
sparse metric learning in high-dimensional space via l 1-penalized
log-determinant regularization,” in Proceedings of the 26th Annual
International Conference on Machine Learning. ACM, 2009, pp. 841–
848.

[13] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning a
mahalanobis metric from equivalence constraints,” Journal of Machine
Learning Research, vol. 6, no. Jun, pp. 937–965, 2005.

[14] R. Linsker, “An application of the principle of maximum information
preservation to linear systems,” in Advances in neural information
processing systems, 1989, pp. 186–194.

[15] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance
metric learning with application to clustering with side-information,” in
Advances in neural information processing systems, 2003, pp. 521–528.

