
Project 3: Feature Encoding for Image Classification
Xu Jiayi , Gao Yifeng, Tang Qidong, Bi Wendong

I. Local descriptor extraction
A. SIFT
SIFT (Scale-Invariant Feature Transform) [1] a method for
extracting distinctive invariant features from images that can
be used to perform reliable matching between different views
of an object or scene. The features are invariant to image
scale and rotation, and are shown to provide robust matching
across a substantial range of affine distortion, change in 3D
viewpoint, addition of noise, and change in illumination.

Features extracted with SIFT have the following main
properties:

1) Scale-Invariant Feature Detection
Compared to some common feature detectors, such as
Harris corner detector, a main advantage of SIFT is that
the features extracted with SIFT avoid scale variance.
Mainly Same features can be extracted regardless of
their size. And the features are also immune to rotation.

Fig. 1. Scale Variance

2) SIFT features are robust illumination, noise and minor
changes in viewpoints. They are highly distinctive, al-
lowing for object identification.

3) Recognition can be performed in close-to-real time on
modern computation device.

The algorithm of SIFT is composed of several parts:
1) Scale-space extrema detection: The input image is con-

volved with Gaussian filters at different scales, and then the
difference of successive Gaussian-blurred images are taken.
Keypoints are then taken as maxima/minima of the Difference
of Gaussians (DoG) that occur at multiple scales. A DoG
image D(x, y, σ) is given by

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ)

Where L(x, y, kσ is the convolution of the original image
I(x, y) with the Gaussian Blur G(x, y, kσ at scale kσ, i.e.,

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y)

Hence a DoG image between scales kiσ and kjσ is the
difference of the Gaussian-blurred images at scales kiσ and

kjσ. For scale space extrema detection in the SIFT algorithm,
the image is first convolved with Gaussian-blurs at different
scales. The convolved images are grouped by octave (an octave
corresponds to doubling the value of σ), and the value of ki is
selected so that we obtain a fixed number of convolved images
per octave. Then the Difference-of-Gaussian images are taken
from adjacent Gaussian-blurred images per octave.

Once DoG images have been obtained, keypoints are identi-
fied as local minima/maxima of the DoG images across scales.
This is done by comparing each pixel in the DoG images to
its eight neighbors at the same scale and nine corresponding
neighboring pixels in each of the neighboring scales. If the
pixel value is the maximum or minimum among all compared
pixels, it is selected as a candidate keypoint.

2) Keypoint localization: At each candidate location, a
detailed model is fit to determine location and scale. Keypoints
are selected based on measures of their stability.

3) Orientation assignment: One or more orientations are
assigned to each keypoint location based on local image
gradient directions. All future operations are performed on
image data that has been transformed relative to the assigned
orientation, scale, and location for each feature, thereby pro-
viding invariance to these transformations.

4) Keypoint descriptor: The local image gradients are mea-
sured at the selected scale in the region around each keypoint.
These are transformed into a representation that allows for
significant levels of local shape distortion and change in
illumination.

B. SURF
SURF (Speeded Up Robust Features) [2] is partly inspired by
the SIFT descriptor. The standard version of SURF is several
times faster than SIFT and claimed by its authors to be more
robust against different image transformations than SIFT.

The SURF algorithm is based on the same principles and
steps as SIFT; but details in each step are different. The
algorithm has three main parts: interest point detection, local
neighborhood description and matching.

1) Detection: SURF uses square-shaped filters as an ap-
proximation of Gaussian smoothing. (The SIFT approach uses
cascaded filters to detect scale-invariant characteristic points,
where the difference of Gaussians (DoG) is calculated on
rescaled images progressively.) Filtering the image with a
square is much faster if the integral image is used:

S(x, y) =

x∑
i=0

y∑
j=0

I(i, j)

The sum of the original image within a rectangle can be eval-
uated quickly using the integral image, requiring evaluations
at the rectangle’s four corners.

SURF uses a blob detector based on the Hessian matrix to
find points of interest. The determinant of the Hessian matrix is
used as a measure of local change around the point and points
are chosen where this determinant is maximal. In contrast to
the Hessian-Laplacian detector by Mikolajczyk and Schmid,
SURF also uses the determinant of the Hessian for selecting
the scale, as is also done by Lindeberg. Given a point p =
(x, y) in an image I , the Hessian matrix H(p, σ) at point p
and scale σ, is:

H(p, σ) =

(
Lxx(p, σ) Lxy(p, σ)
Lyx(p, σ) Lyy(p, σ)

)
where Lxx(p, σ) etc. is the convolution of the second-order
derivative of Gaussian with the image I(x, y) at the point p.

The box filter of size 9∗9 is an approximation of a Gaussian
with σ = 1.2 and represents the lowest level (highest spatial
resolution) for blob-response maps.

2) Scale-space representation and location of points of
interest: Images are repeatedly smoothed with a Gaussian
filter, then they are subsampled to get the next higher level
of the pyramid. Therefore, several floors or stairs with various
measures of the masks are calculated:

σapprox = current filter size×
(

base filter scale
base filter size

)
The scale space is divided into a number of octaves, where
an octave refers to a series of response maps of covering a
doubling of scale. In SURF, the lowest level of the scale space
is obtained from the output of the 9 ∗ 9 filters.

3) Descriptor:

• Orientation assignment: In order to achieve rotational
invariance, the orientation of the point of interest needs
to be found. The Haar wavelet responses in both x- and
y-directions within a circular around the point of interest
are computed.
The obtained responses are weighted by a Gaussian
function centered at the point of interest, then plotted
as points in a two-dimensional space. The dominant
orientation is estimated by calculating the sum of all
responses within a sliding orientation window of size
π/3. The horizontal and vertical responses within the
window are summed. The two summed responses then
yield a local orientation vector. The longest such vector
overall defines the orientation of the point of interest.

• Descriptor based on the sum of Haar wavelet responses:
To describe the region around the point, a square region
is extracted, centered on the interest point and oriented
along the orientation as selected above. he Haar wavelet
responses are extracted at 5x5 regularly spaced sample
points.

C. Deep learning
In deep learning methods, we first extracted proposals from
each sample image by selective search implemented by Mat-
lab, and then we use these proposals as input for deep learning
neural network and output their feature as 2048-dim vectors.

Here we use Resnet101 as our model, and we firstly train
100 epochs using original dataset, and get an classification
accuracy of 95% on test set. And then we use proposals as
input and output their feature vector after convolutional layers
of neural network after view function(2048-dim vectors) while
just before fully-connected layers (classifier).

1) Selective Search by bounding box: For better image
segmentation, we first convert original RGB image into gray
image using binaryzation. And then use selective search
methods to get bounding box of different proposals for each
gray image [3]. Because image after binaryzation is easier to
compute bounding box region. We then apply bounding box
on the same region on original RGB image.

Finally, we crop the RGB image with bounding box to get
proposals. Because some of the proposals are very small and
less meaningful, we use a threshold of image size to limit
the number of proposals get from each image. And we can
successfully get some proposals such as the eyes, hands or
ears of dogs as shown in Fig. 2.

We implement seletive search by Matlab2016a.

Fig. 2. Selective search

2) Deep learning neural network: Resnet101 [4]: In this
part, we first use Resnet101 model pretrained by ImageNet and
add parts of images for training (60%) and others for testing.
After training 100 epochs, we get an classification accuracy
of 95% (Fig.4) on testing set by classifier composed of one
fully connected layer.

After model preparation, we saved the trained model and
use this model to generate deep learning feature for proposal
images.

We implement this part with environment pytorch1.0.1 .

Fig. 3. Structure of Resnet101

Fig. 4. Train(red) and test(blue) accu-
racy

Fig. 5. Train(red) and test(blue) loss

II. Feature encoding
A standard approach to describe an image for classification
and retrieval purposes is to extract a set of local descriptors,
encode them into a high dimensional vector and pool them
into an image-level signature.

A. Bag-of-word
The bag-of-word(BoW) [5] method is largely inspired by the
bag-of-words concept which has been used in text mining.
In BoW model, each image is represented as a collection of
local properties. The two main steps are code book training
and feature pooling.

1) Train a Codebook
• Feature extraction: This is what we stated in Sec-

tion refsec:extraction. Through SIFT or other ex-
traction method, we can get the local descriptors of
all the training images.

• Feature clustering: Through clustering methods such
as K-means, all derived local descriptors can be
divided into K clusters. The center of each cluster
is called a word in BoW model. All the words form
a codebook.

2) Feature Pooling
• Feature extraction : The extraction process is totally

the same as what we do before. However this time,

the extraction objects are not only training images
but also test images.

• Feature encoding : For each local descriptor, we
compute its distance to each word in our codebook.
And we classify the local descriptor to the cluster
whose center is nearest. By this way, each image can
be represented by the BoW frequency histograms of
the visual vocabulary of the codebook.

BoW model defines BoW histograms as the feature repre-
sentation for images. The similarity of images can be measured
by comparing between the BoW histograms. The dimension of
BoW vector is K, the size of codebook and also the number
of clusters in cluster model (K-means in this project).

B. VLAD
Vector of locally aggregated descriptors (VLAD) starts by
vector quantizing a locally invariant descriptor such as SIFT.
It differs from the BoW image descriptor by recording the
difference from the cluster center, rather than the number of
SIFTs assigned to the cluster [6].

The algorithm for VLAD is shown in Alg. 16.

Algorithm 1 An example for format For & While Loop in
Algorithm

1: Input: A set of descriptors x1, . . . , xT
A set of centroids (codebook) µ1, . . . , µK

2: for all i = 1, . . . ,K do
3: vi := 0d
4: end for
5: # accumulate descriptor
6: for all t = 1, . . . , T do
7: i = arg minj ||xt −−µj ||
8: vi := vi + (xt − µi)
9: end for

10: V = [vT1 . . . x
T
K]

11: # apply power normalization
12: for all j = 1, . . . ,Kd do
13: Vj := sign(Vj)|Vj |α
14: end for
15: # apply L2 Normalization
16: V := V

||V ||2

C. Fisher vector
Fisher vector [7] describes local descriptors by their deviation
from an universal generative Gaussian mixture model. This
representation has many advantages over Bag-of-word: it is
efficient to compute, it leads to excellent results even with
efficient linear classifiers, and it can be compressed with a
minimal loss of accuracy using product quantization.

For a picture, suppose it has T extracted local descriptors,
each local descriptor is of dimension D, Then we can describe
this picture with the matrix X = {xt, t = 1, · · · , T}.

To get the fisher vector of each image, first, we should gen-
erate the GMM model, a mixture of K Gaussian distribution

with dimension of D from all images’ local descriptor matrix.
Suppose the learnt GMM model’s parameter set is:

λ = {ωk, µk,Σk, k = 1, · · · ,K}

We have a hypothesis here: the T local descriptors are inde-
pendent and identically distributed (i.i.d), therefore:

p(X|λ) =

T∏
t=1

p(xt|λ),

where p(X|λ) represents the probability of the image X
generated from the GMM model specified by parameter set
λ.

Take the logarithm of it, then we can get:

L(X|λ) =

T∑
t=1

logp(xt|λ)

Since we use a mixture of K Gaussian distributions to
describe the distribution of local descriptors, the GMM model
can be represented as follows:

p(xt|λ) =

K∑
i=1

ωipi(xt|λi),

where ωi is the i-th Gaussian distribution’s weight, sum(ωi)
= 1. pi is the i-th Gaussian distribution:

pi(x|λ) =
exp{−1/2(x− µi)′

∑−1
i (x− µi)}

(2π)D/2|
∑
i |1/2

We can calculate the probability that the local descriptor xt
is generated by the i-th Gaussian distribution:

γt(i) = p(i|xt, λ) =
ωipi(xt|λ)
N∑
j=1

ωjpj(xt|λ)

Then, we can get the following partial derivatives:

∂L(X|λ)

∂ωi
=

T∑
t=1

[
γt(i)

ωi
− γt(1)

ωi

]
for i ≥ 2

∂L(X|λ)

∂µdi
=

T∑
t=1

γt(i)

[
xdt − µdi
(σdi)2

]
∂L(X|λ)

∂σdi
=

T∑
t=1

γt(i)

[
(xdt − µdi)2

(σdi)3
− 1

σdi

]
,

where i represents the i-th Gaussian distribution, d represent
the d-th dimension of xt.

After calculating the partial derivatives, we should normal-
ize them, and then we get the fisher vector composed of those
partial derivatives. If we count in the weight of each Gaussian
distribution in the GMM model, then the dimension of fisher
vector is (K + 2 ∗K ∗D), while if we ignore the weight, the
dimension of the fisher vector is (2 ∗K ∗D).

III. Experiments
In this section, we will introduce the details about the exper-
iment procedure, and the results of different methods will be
displayed and compared.

A. About the Dataset
The dataset we use is Animals with Attributes (AwA2) dataset,
which consists of 37322 images of 50 animals classes. 60%
of the images are divided for training and 40% for testing.
The training/test split is completely the same as that in Prj. 1
and Prj. 2. The features we use in Prj. 1 and Prj. 2 are pre-
extracted deep learning features, while local descriptors are
used for feature encoding in this project. The local descriptors
are extracted by SURF, SIFT and deep-learning method.

B. Selection of Extraction Methods
1) SIFT vs. SURF: As we introduce in Sec. I, SURF and

SIFT are two feature detection algorithms to detect and de-
scribe local features in images. We first do some experiments
based on BoW to compare the two local feature extraction
methods. Considering the size of the image are different, we
resize each image to 224× 224 pixels.

TABLE I
ACCURACY ON SURF AND SIFT (CODEBOOK SIZE:1000, PCA

DIMENSION: 128)

Method

Standardization
L2 Z-Score L2+Z-

Score

SURF 0.16846 0.15547 0.16290

SIFT 0.16753 0.16345 0.16456

As we can see from Table I, the performances between
SURF and SIFT do not make much difference. Although
SURF with L2 Normalization gains the highest accuracy,
average performances of SIFT are better than SURF. Gen-
erally, SURF is better than SIFT in rotation invariant, blur
and warp transform. SIFT is better than SURF in different
scale images [8]. The images of AwA2 are of different size
however nearly without rotation or intentional blur. We think
this is why SIFT performs a little bit better. Also considering
the requirement is to extract local descriptor using SIFT, thus
we do not pay any attention to SURF anymore.

2) SIFT vs. Deep-Learning: In addition, we make an effort
to extract local descriptors by deep learning method. We be-
lieve that the neural network ResNet101 is of no problem. The
classification accuracy on testing set (95%) also demonstrates
this. However, the Selective Search process falls short of the
desired effect. On average, the number of proposals searched
from each images is around 10.

10 local descriptors per image is not enough for feature
encoding. It is not a good idea to set the size of the codebook
too small. It is unlikely to get a good result if the codebook
size is far below the number of animals(also the number of
labels). However, if we set the size of the codebook large, then

most of the bits in a feature vector derived by BoW or VLAD
will be 0. It is unsatisfactory too. As a result, whether we set
the size of codebook large or small, the classifier accuracy is
around 0.120 in BoW, and around 0.140 in VLAD.

In addition, we use the 2048-dim feature output by
ResNet101 as the local descriptor of the image. That is to
say, one image with only one proposal, derives one 2048-dim
local descriptor. Then, we perform KMeans on the 2048-dim
feature vector. Here, KMeans is equivalent to BoW because
each image has only one local descriptor. The results shows
that the classification accuracy reaches 0.82055. The accuracy
is defined as that the probability of the original class is still a
class in KMeans. This result shows the power of deep learning.

On conclusion, these local descriptors extracted by us is not
good. Though, We do not give up the deep learning extraction
method, because we believe well-trained deep learning model
will perform much better than traditional method (Also proved
from the side by the last paragraph). Unfortunately, the time is
not enough for us to derive a decent result right now. However,
we will still stick to deep learning method and make an effort
to make distinguished progress.

C. Selection of Local Descriptors’ Form
SIFT returns a Matrix Sm×k for each image, in which m is
the number of local descriptors and k is the dimension of a
local descriptor vector (128-dim) .There is a large difference
between the value of m for different image.m for some images
reaches 10000 while for some is less than 100. We think there
are two main reasons:

• The size of images in AwA2 varies greatly.
• Different kinds of animals vary greatly. Some animals

possess obvious characteristics of each part of the body
while the others do not.

To explore the effect of the unbalance of the number of local
descriptors, we did a series of experiment. We extract all the
local descriptors of the images using cv2 Library Function.
This 80GB file represents All-feature form. We also take the
first 100 features (100st-feature form), hoping to capture the
key features as well as make a balance of different sample on
the number of local descriptors. Moreover, we resize all the
pictures into 224×224 pixels (224×224-feature form), hoping
to resolve the inequality of image size. This operation reduces
the file size by 14 times (5.7GB) and makes the number of
different sample’s local descriptors more balanced.

TABLE II
ACCURACY ON DIFFERENT FORM (CODEBOOK SIZE:1000, PCA

DIMENSION: 128)

Feature

Standardization
L2 MaxMin-

Score
L2+MaxMin-

Score

All-feature 0.34700 0.31776 0.34168

100st-feature 0.18277 0.18646 0.18725

224× 224-feature 0.16846 0.15547 0.16290

Table II shows that the performance of 224 × 224-feature
is the worst. We think this is because the degree of distortion
for different image is not the same. The original size differs
greatly, such as 1024×683, 683×1024, 1024×768 and 1000×
607. When they are resized to 224× 224 pixels, the force of
the scaling on different directions for different images are not
the same. For example, images with size of 1024 × 683 are
stretched on horizontal-axis compared to vertical-axis shown
in Fig 6, while images with size of 683 × 1024 is stretched
on vertical-axis in Fig. 7.

(a) original image (b) resized image

Fig. 6. 1024× 683 image being stretched on horizontal-axis

(a) original image (b) resized image

Fig. 7. 683× 1024 image being stretched on vertical-axis

The performance of the 100st-feature is far behind the
origin feature. This demonstrates the latter features are not
noise. On the contrary, they contain a lot of valid information.
Although the number of local descriptors in All-feature is
severely unbalanced. By applying Standardization to each
feature vector, the numerical value in feature vector could
represents the frequency of each type of the local descriptor.
Plus the complete information of the images, All-feature
obtains a relatively competitive performance.

To cluster all the local descriptors in our computer is nearly
impossible. So in All-feature experiment, we just randomly
select 5% local descriptors in training set to be fed to the
Kmeans cluster model and use all the local descriptors for
encoding. Even so, it is also a burden for us. Therefore, we

run experiment on 100st-feature most time, and All-feature is
only used when we need final highest accuracy.

D. Feature encoding method
1) BoW:
• Effect on the Normalization

Considering the number of local descriptors for each
image varies greatly. For example, two images are alike
with different size. Then the type of local descriptors
extracted from them are likely to be similar but the
number of each type of local descriptors may be different.
Therefore, just use the BoW histogram as the feature
representation for images may be unreasonable. The ratio
of each type of local descriptors may become a better
choice. Therefore, we try to perform normalization for
each feature vector. Here we use L2-Normalization.

L2 : dst(i, j) =
src(i, j)√∑
src(x, y)2

Before the features are fed to PCA, it is usually need
to perform standardization. This is different from above.
The L2-Normalization is applied to each sample (a
row in the dataset). Here the standardization is
applied to each feature dimension of all samples (a
line in the dataset). Here we try StandardScaler and
MinMaxScaler.
The StandardScaler uses Z-score method. The score of a
sample x is calculated as:

z = (x− u)/s

where u is the mean of the training samples and s is the
standard deviation of the training samples .
For MinMaxScaler:

Xstd = (X −min)/(max−min)

Xscaled = Xstd ∗ (max−min) +min

where max and min are the maximum and minimum of
the line(axis=0).

TABLE III
ACCURACY ON DIFFERENT STANDARDIZATION (100st-FEATURE,

CODEBOOK SIZE:1000, PCA DIMENSION: 128)

Method L2 Z-score MinMax L2 +
Z-score

L2 +
MinMax

Accuracy 0.18277 0.13820 0.14844 0.14817 0.19267

From Table III, we can see that, L2 performs best when
3 methods are used alone. This is in agreement with what
we state in the previous paragraph. The standardization
within each vector sample is more important than stan-
dardization for each feature dimension of all samples. In
addition, MinMax standardization performs better that Z-
score standardization. We think this is because the data do
not obey Gaussian distribution. MinMax standardization

is more closer to the ratio, which is more suitable in this
project.
Based on this, we perform L2 and MinMax standardiza-
tion to the All-feature dataset. Results are shown in Ta-
ble IV. The results are similar to those on 100st-feature,
L2- normalization for each sample is more essential.

TABLE IV
ACCURACY ON DIFFERENT STANDARDIZATION (ALL-FEATURE ,

CODEBOOK SIZE:1000, PCA DIMENSION: 128)

Method L2 MinMax L2 + MinMax

Accuracy 0.34700 0.31776 0.34105

• Effect of the value C in SVM
In this project, we use Linear SVM as the classifier. For
the consistency with the previous Projects, we set the
linear kernel as fixed. Among the other parameters of
SVM, we find C has a huge impact on the classification
accuracy.

TABLE V
ACCURACY ON DIFFERENT VALUE OF C (ALL-FEATURE , CODEBOOK

SIZE:1000, PCA DIMENSION: 128)

Value of C 1.0 5.0 10.0

Accuracy 0.34700 0.35523 0.34105

2) VLAD:
• Effect of the Size of Codebook and PCA dimension

For VLAD method, the dimension of feature vector is
(K ∗ D), K is the number of clusters in KMeans, also
the size of codecook. Considering the (K ∗D) is a long
vector, We explore the effect of the size of codebook and
PCA dimension. The feature we use is the 100st-feature.
As we can see, with the size of codebook varying from
32 to 128, and the PCA dimension equaling to 128 or
256, the accuracy does not change greatly. All 6 accuracy
values are between 0.22 to 0.23, which demonstrates that
these two factors do not have a significant impact.
On the whole, PCA dim = 128 is better than PCA dim=
256, whatever the size of the codebook. This phenomenon
is a proof that the VLAD vector is of redundancy.
Reducing it to a relatively low-dimension space not only
removes the noise but also speeds up the computing
process for SVM. The impact of the codebook size
is even weaker. The range of accuracy change caused
by codebook size is around 0.001. Therefore, we are
confident that 32 is a large enough codebook for 100st-
feature.

Fig. 8. Effect on the Size of Codebook and PCA dimension

Final Result of VLAD
Based on the previous experiment, we know L2 + Min-
MaxScaler is a good standardization. C = 5 in SVM is
a good value than default. We also set these for VLAD
on All-feature. These settings do give us a comparatively
good result. In this part, one of the point we find that
is different from the previous experiment is the size of
codebook. When we do experiment on 100st-feature, we
find that codebook size does not make much difference.
However, the size of codebook in All-feature has larger
significance. When it is set as 128, VALD obtains the
highest classification accuracy 0.37712. We think this is
because the number of local descriptors are larger than
100st-feature. The modality of local descriptors must be
more abundant too. Therefore a large codebook makes a
positive effect.

TABLE VI
ACCURACY ON DIFFERENT CODEBOOK SIZE (ALL-FEATURE , PCA

DIMENSION: 128, C = 10)

Codebook Size 32 64 128

Accuracy 0.35425 0.34093 0.37712

3) Fisher Vector:

• Effect of normalization
Since the number of local descriptors of each image
varies greatly, we should do normalization on each fisher
vector. Similarly, each feature of the codebook differs
from each other, thus we should do normalization on each
feature as well. The total dataset after feature encoding
with fisher vector is a matrix with 2*K*D columns and
N rows, where K represents the number of features in the
codebook, D represents the dimension of each feature in
the codebook, and N represents the number of all samples
in the dataset.
We do ‘max’ normalization and ‘MinMax’ normalization
on each row and each column.
Suppose X is a vector of length n, and say that the
normalized vector is y = x/z. The ‘max’ norm will use

maxxi to denote z, while the ‘MinMax’ norm will use
y = (x − minxi)/(maxxi − minxi) to represent the
normalized vector. The classification results can be seen
as Tab. VII

TABLE VII
ACCURACY ON DIFFERENT NORMALIZATION (CODEBOOK SIZE:3,

CLASSIFICATION METHOD: LINEAR SVM)

Norm without
norm

max on
column

max on
row

MinMax
on

column

MinMax
on row

Accuracy 0.14918 0.12466 0.12278 0.13169 0.13866

As we can see, the dataset without normalization achieved
the highest accuracy. ‘MinMax’ norm achieves better
result than ‘max’ norm. Maybe that is because when the
feature data has tiny difference from each other, ‘max’
norm cannot distinguish them, thus that feature is useless
in the classification step. Overall, doing normalization
on row performs better than doing normalization on
column. This is also in agreement with what we state in
the previous paragraph: the standardization within each
vector sample is more important than standardization for
each feature dimension of all samples.

• Effect of PCA dimension
For fisher vector method to do feature encoding, the
dimension of each feature vector is (2*K*D). Since
(2*K*D) is a long vector, we use PCA to do dimension
reduction. The classification results can be seen as Tab.
VIII.

TABLE VIII
ACCURACY ON DIFFERENT PCA DIMENSIONS (CODEBOOK SIZE:3,

CLASSIFICATION METHOD: LINEAR SVM)

PCA dimension without
PCA

PCA-
64

PCA-
128

PCA-
256

PCA-
512

Accuracy 0.14918 0.13953 0.14502 0.14924 0.14924

As we can see, the dataset with dimension reduced to
256 and 512 using PCA achieves highest accuracy. This
result reveals that fisher vector is of redundancy as well.
Reducing the dataset to a relatively low-dimension space
will not only remove the noise, but also reduce the
computation of SVM classification.

• Effect of SVM kernel
When we use SVM to do classification and the dataset
is not linear separable, usually we map the dataset to a
higher dimension, and make the dataset separable there.
Kernel function can help us map the dataset to higher di-
mension. There are many kernel functions. Linear kernel
is usually used when the dataset is linear separable and
the feature space is huge. Polynomial kernel is usually
used in image processing tasks. Gaussian radial basis
kernel (RBF kernel) is a commonly-use kernel in linear
inseparable situations, and the feature space is not so
huge. Sigmoid kernel is kind of similar to RBF kernel.

The classification results of different kernel functions for
SVM can be seen as Tab. IX.

TABLE IX
ACCURACY ON DIFFERENT KERNEL FUNCTIONS (CODEBOOK SIZE:3,

CLASSIFICATION METHOD: SVM)

Kernel Linear Polynomial RBF Sigmoid

Accuracy 0.14918 0.04407 0.04407 0.06370

As we can see, SVM with linear kernel performs best.
Maybe that is because each dimension in fisher vector
is a representation of a Gaussian distribution, they are
naturally separable, thus there is no need to map the
dataset to a higher dimension to get high accuracy.

• Effect of different codebook size In VLAD, K = 32
is a good choice for 100st feature and K = 128 for
All-feature. A little bit large K makes higher accuracy.
However, fisher vector is very time consuming when
using the features we extracted, so we only try K = 3
and K = 5. The results are shown as Tab. X.

TABLE X
ACCURACY ON DIFFERENT K FOR SIFT FEATURE (PCA DIMENSION: 512,

CLASSIFICATION METHOD: LINEAR SVM)

Codebook size 3 5

Accuracy 0.14918 0.12399

IV. Conclusion
In this project, we implement three different feature extraction
methods: SURF, SIFT, and deep learning. For deep learning,
we implement two distinct methods. One is to extract propos-
als first and then use DNN to output the proposals’ features,
the other is to use an end-to-end DNN and output one feature
vector for one image.

Through feature selection, we find that the feature extracted
by SIFT method has best overall performance in the following
encoding and classification step. Therefore, we verify the
performance of different feature encoding methods using SIFT
feature. The three feature encoding methods we verify are
BoW, VLAD and fisher vector. The highest classification
accuracy using SVM on their encoded features can be seen
as Tab. XI.

TABLE XI
BEST PERFORMANCE OF DIFFERENT FEATURE ENCODING METHODS

Method Accuracy

BoW 0.35523

VLAD 0.37712

Fisher vector 0.14924

Although fisher vector does not perform better than the other
two feature encoding methods according to the table above, it
has better performance with the same codebook size.

REFERENCES

[1] P. C. Ng and S. Henikoff, “Sift: Predicting amino acid changes that affect
protein function,” Nucleic acids research, vol. 31, no. 13, pp. 3812–3814,
2003.

[2] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[3] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Se-
lective search for object recognition,” International journal of computer
vision, vol. 104, no. 2, pp. 154–171, 2013.

[4] Z. Lu, X. Jiang, and A. Kot, “Deep coupled resnet for low-resolution face
recognition,” IEEE Signal Processing Letters, vol. PP, no. 99, pp. 1–1,
2018.

[5] F. Jurie and B. Triggs, “Creating efficient codebooks for visual recog-
nition,” in Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, vol. 1. IEEE, 2005, pp. 604–610.

[6] R. Arandjelovic and A. Zisserman, “All about vlad,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, 2013,
pp. 1578–1585.

[7] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-
tion with the fisher vector: Theory and practice,” International journal of
computer vision, vol. 105, no. 3, pp. 222–245, 2013.

[8] D. Mistry and A. Banerjee, “Comparison of feature detection and
matching approaches: Sift and surf,” GRD Journals- Global Research
and Development Journal for Engineering, vol. 2, pp. 7–13, 03 2017.

