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Motivations A
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= Cluttered objects remain difficult to be detected due to the large variations
(e.g., occlusion and illumination)

= Depth information can provide additional geometric cues to complement
RGB image

= While RGB image capturing devices are pervasive, depth capturing devices
are much less prevalent.



Learning Using Privileged Information . =

= Privileged information: can be accessed in training stage while be not
available in inference stage.
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Deformable Convolutional Network
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(a) standard convolution (b) deformable convolution




Deformation in Different Modalities
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Depth Privileged Object Detection =

=

= Research lines:
= Modality hallucination: HallucitantionNet , Cao et al. (2016)

= Multi-task learning: ROCK
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Positive Position Transfer m
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= The depth deformation is not always reliable, transferring noisy deformation
IS likely to degrade the performance.

Positive samples, which are determined by ATSS algorithm, has a major
influence on the results (classification, regression)
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Avoid Negative Transfer PR o

=

= Classification scores (with/without dcn) can reflect the quality of deformation

= we calculate the loss weights at different positions in previous DeformConvs
by tracking their contributions to the classification score improvement.
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(a) RGB images (b) RGB Deformation (c) Hallucinated Deformation (d) Depth Deformation (e) HHA-encoded images




Compared with SOTA Methods e [T
L, L, % L MAP(%)
NYUDv2 | SUN RGB-D
v 44.01 53.93
v v 46.26 56.15
v v 46.50 56.47
v v 46.88 56.84
MAP(%)
Method
NYUDv2 SUN RGB-D
FCOS+ATSS 42.73 52.94
HallucinationNet 45.22 55.35
ROCK 44.89 55.14
Cao et al.(2016) 4496 55.27
Ours 46.88 56.84




Ablation Study

Configuration of DeformConvs

2N —1 0.
Fusion Strategy Analyses
After After
mAP(%) DeformConvs sub-branch
Concatenation 46.32 46.88
Addition 4579 46.15

Evaluation on RGB-only dataset

mMAP(%)
Configuration
Lq Ly + plL,
B, 43.66 45.34
B, 44.17 45.93
B, 44.43 46.19
Hy 43.35 45.36
H, 44.04 46.26
H, 4421 46.30
B;+H, 44.25 46.32

Model mMAP(%)
RGB-only 38.96
Ours 40.68
RGB-only(ft) 81.01
Ours(ft) 82.57




Depth Privileged Object Detection in Indoor
Scenes via Deformation Hallucination
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