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▪ Cluttered objects remain difficult to be detected due to the large variations 

(e.g., occlusion and illumination)

▪ Depth information can provide additional geometric cues to complement 

RGB image

▪ While RGB image capturing devices are pervasive, depth capturing devices 

are much less prevalent.

Motivations



▪ Privileged information: can be accessed in training stage while be not 

available in inference stage.

Learning Using Privileged Information
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Deformable Convolutional Networks

Standard Convolution Deformable Convolution



Deformable Convolutional Networks



Deformation in Different Modalities 
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▪ Research lines:

▪ Modality hallucination: HallucitantionNet , Cao et al. (2016)

▪ Multi-task learning: ROCK

Depth Privileged Object Detection



HallucinationNet



ROCK
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Framework
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▪ The depth deformation is not always reliable, transferring noisy deformation 

is likely to degrade the performance.

▪ Positive samples, which are determined by ATSS algorithm, has a major 

influence on the results (classification, regression)

Positive Position Transfer
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▪ Classification scores (with/without dcn) can reflect the quality of deformation

▪ we calculate the loss weights at different positions in previous DeformConvs

by tracking their contributions to the classification score improvement.

Avoid Negative Transfer
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Visualization Results



Compared with SOTA Methods

𝑳𝒅 𝑳𝒐 𝑳𝒐
𝒑

𝑳𝒐
𝒑𝒘 mAP(%)

NYUDv2 SUN RGB-D

√ 44.01 53.93

√ √ 46.26 56.15

√ √ 46.50 56.47

√ √ 46.88 56.84

Method
mAP(%)

NYUDv2 SUN RGB-D

FCOS+ATSS 42.73 52.94

HallucinationNet 45.22 55.35

ROCK 44.89 55.14

Cao et al.(2016) 44.96 55.27

Ours 46.88 56.84



Ablation Study

Configuration
mAP(%)

𝑳𝒅 𝑳𝒅 + 𝝁𝑳𝒐

𝐵1 43.66 45.34

𝐵2 44.17 45.93

𝐵3 44.43 46.19

𝐻1 43.35 45.36

𝐻2 44.04 46.26

𝐻3 44.21 46.30

𝐵3+𝐻2 44.25 46.32

mAP(%)
After 

DeformConvs
After 

sub-branch

Concatenation 46.32 46.88

Addition 45.79 46.15

Model mAP(%)

RGB-only 38.96

Ours 40.68

RGB-only(ft) 81.01

Ours(ft) 82.57

Configuration of DeformConvs Fusion Strategy Analyses

Evaluation on RGB-only dataset
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