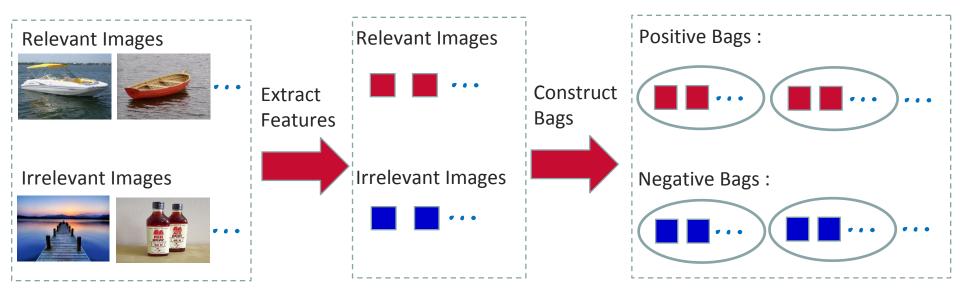


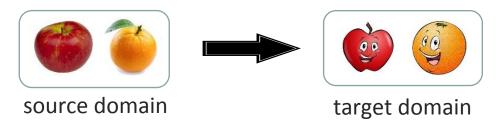
Weakly Supervised Domain Generalization

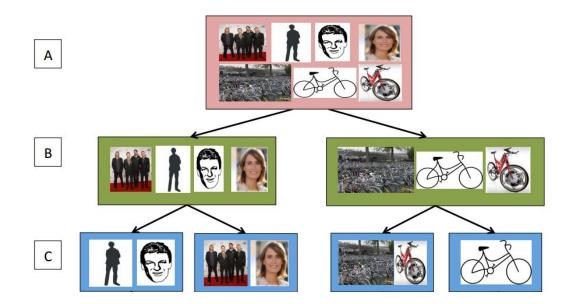
presented by **Niu Li**IGS ROSE
Nanyang Technological University (NTU), Singapore

Learning from Web data is increasingly popular but remains challenging.


Unseen Target Domain
Domain Generalization

Background: Multi-instance Learning


By treating each cluster as a "bag" and the images in each bag as "instances", multi-instance learning (MIL) methods are used for visual recognition.



Background: Domain Generalization

Domain Adaptation

Domain generalization is to generalize source domain to <u>unknown</u> target domain. Source domain may contain multiple <u>latent</u> domains characterized by different hidden factors (e.g., pose, illumination).

Formulation


Preliminary: multi-class multi-instance formulation

$$\begin{split} \min_{\substack{\mathbf{h} \in \mathcal{H} \\ \mathbf{w}_c, \xi_l}} & \frac{1}{2} \sum_{c=1}^{C} \|\mathbf{w}_c\|^2 + C_1 \sum_{l=1}^{L} \xi_l \\ \text{s.t.} & \frac{1}{|\mathcal{B}_l|} \sum_{i \in I_l} h_i) ((\mathbf{w}_{Y_l})' \phi(\mathbf{x}_i) - (\mathbf{w}_{\tilde{c}})' \phi(\mathbf{x}_i)) \\ \text{select indicator} & \geq \eta - \xi_l, \quad \forall l, \tilde{c} \neq Y_l, \\ \xi_l \geq 0, \qquad \forall l, \end{split}$$

Formulation

Precompute probabilities: disover latent domains

$$\max_{\pi_{i,m}} \sum_{m \neq \tilde{m}} \| \frac{1}{N_m} \sum_{i=1}^{N} \pi_{i,m} \phi(\mathbf{x}_i) - \frac{1}{N_{\tilde{m}}} \sum_{i=1}^{N} \pi_{i,\tilde{m}} \phi(\mathbf{x}_i) \|^2$$

Formulation

Final formulation: weakly supervised domain generalization

$$\begin{split} & \min_{\mathbf{h} \in \mathcal{H} \\ \mathbf{w}_{c,m}, \xi_{l}} & \frac{1}{2} \sum_{c=1}^{C} \sum_{m=1}^{M} \|\mathbf{w}_{c,m}\|^{2} + C_{1} \sum_{l=1}^{L} \xi_{l} \\ & - C_{2} \underbrace{\rho(\mathbf{B}, \mathbf{K} \circ (\mathbf{h}\mathbf{h}'))} \\ & \text{s.t.} & \frac{1}{|\mathcal{B}_{l}|} \sum_{i \in I_{l}} h_{i} \left(\sum_{m=1}^{M} \hat{\beta}_{i,m} (\mathbf{w}_{Y_{l},m})' \phi(\mathbf{x}_{i}) - (\mathbf{w}_{\tilde{c},\tilde{m}})' \phi(\mathbf{x}_{i}) \right) \\ & \geq \eta - \xi_{l}, \quad \forall l, \tilde{m}, \tilde{c} \neq Y_{l}, \quad \text{calculated from } \pi_{i,m} \\ & \xi_{l} \geq 0, \quad \forall l. \end{split}$$

Experimental Results

1. Video Event Recognition training dataset: Flickr test dataset: Kodak, CCV2. Image Classification training dataset: Bing test dataset: Caltech-256

	Method	Testing Dataset		
	Method	Kodak	CCV	Caltech-256
basic baseline ←	SVM [9]	34.36	40.84	70.93
multi-instance baselines	sMIL [6]	38.46	41.34	71.33
	mi-SVM [2]	37.95	46.38	71.47
	MIL-CPB [30]	38.97	46.29	71.6
	KI-SVM [32]	40.00	42.85	71.20
	DICA [34]	42.05	44.10	70.80
domain generalization baselines	LRESVM [42]	41.94	48.12	72.93
	[23] (Match)	37.13	41.37	71.07
	[23] (Ensemble)	37.42	41.40	70.08
	[19] (Match)	40.93	44.44	71.47
subcategory baselines	[19](Ensemble)	42.39	47.51	72.40
	Sub-Cate [22]	38.59	47.93	72.27
	MMDL [41]	40.51	48.87	72.80
our special cases	WSDG_sim1	42.56	47.47	71.87
	WSDG_sim2	43.59	49.93	74.00
Ours←	WSDG	45.64	51.18	75.20

Thanks for your attention!

