

Multi-view Domain Generalization for Visual Recognition

Li Niu presents

Latent domains are characterized by different hidden factors (e.g., pose, illumination). Domain generalization is to generalize latent source domains to unknown target domain.

Since each sample can be treated as an atomic domain, exemplar classifiers [1] can be readily incorporated into our proposed method.

[1] Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-syms for object detection and beyond. In: ICCV. (2011)

Low rank assumption (Single-View): [2]

Low rank likelihood matrix $\mathbf{G} = [g_{ij}] \in \mathbb{R}^{n \times n}$,

where g_{ij} is the likelihood of the *i*-th positive training sample by using the *j*-th exemplar exemplar classifier.

[2] Xu, Zheng, Wen Li, Li Niu, and Dong Xu. "Exploiting low-rank structure from latent domains for domain generalization." In ECCV, 2014.

Low rank assumption (Multi-View):

Low rank representation matrix $\mathbf{Z}^v \in \mathbb{R}^{n imes n}$

Multi-View Domain Generalization: Formulation

$$\underset{\substack{\mathbf{z}_{v}, \mathbf{W}_{v}, \mathbf{E}_{v}}{\text{st}_{i}^{v}, \epsilon_{ij}^{v}} = \mathbf{V} = \mathbf{V} \left(\frac{1}{2} \| \mathbf{W}^{v} \|_{F}^{2} + C \sum_{i=1}^{n} \xi_{i}^{v} + C \sum_{i=1}^{n} \sum_{j=1}^{m} \epsilon_{ij}^{v} \right) \\
= \sum_{v=1}^{V} \left(\lambda_{2} \| \mathbf{E}^{v} \|_{F}^{2} + \lambda_{3} \| \mathbf{Z}^{v} \|_{*} \right) + \frac{\gamma}{2} \sum_{v, \tilde{v}: v \neq \tilde{v}} \| \mathbf{Z}^{v} - \mathbf{Z}^{\tilde{v}} \|_{F}^{2} \\
= co-regularizer$$
s.t.
$$\underbrace{\mathbf{w}_{i}^{v'} \mathbf{x}_{i}^{v+} \geq 1 - \xi_{i}^{v}, \quad \xi_{i}^{v} \geq 0, \quad \forall v, \forall i, \\ \mathbf{w}_{i}^{v'} \mathbf{x}_{j}^{v-} \leq -1 + \epsilon_{ij}^{v}, \quad \epsilon_{ij}^{v} \geq 0, \quad \forall v, \forall i, \forall j, \\ \mathbf{W}^{v} = \mathbf{W}^{v} \mathbf{Z}^{v} + \mathbf{E}^{v}, \quad \forall v \quad \text{Exemplar SVM} \\
= representation \quad \text{reconstruction} \\ \text{matrix} \quad \text{error} \quad \text{MANWANC}$$

Multi-View Domain Generalization: Optimization

$$\min_{\mathbf{z}^{v}, \mathbf{W}^{v}, \mathbf{G}^{v}} \sum_{\mathbf{z}^{v}, \xi_{ij}^{v}, e_{ij}^{v}} \sum_{v=1}^{V} \left(\frac{1}{2} \| \mathbf{W}^{v} \|_{F}^{2} + C \sum_{i=1}^{n} \xi_{i}^{v} + C \sum_{i=1}^{n} \sum_{j=1}^{m} \epsilon_{ij}^{v} \right) \\
+ \sum_{v=1}^{V} \left(\lambda_{1} \| \mathbf{W}^{v} - \mathbf{G}^{v} \|_{F}^{2} + \lambda_{2} \| \mathbf{E}^{v} \|_{F}^{2} + \lambda_{3} \| \mathbf{Z}^{v} \|_{*} \right) \\
+ \frac{\gamma}{2} \sum_{v, \tilde{v}: v \neq \tilde{v}} \| \mathbf{Z}^{v} - \mathbf{Z}^{\tilde{v}} \|_{F}^{2} \quad \text{intermediate variable} \\
\text{for ease of optimization} \\
\text{s.t.} \quad \mathbf{w}_{i}^{v'} \mathbf{x}_{i}^{v+} \geq 1 - \xi_{i}^{v}, \quad \xi_{i}^{v} \geq 0, \quad \forall v, \forall i, \\
\mathbf{w}_{i}^{v'} \mathbf{x}_{j}^{v-} \leq -1 + \epsilon_{ij}^{v}, \quad \epsilon_{ij}^{v} \geq 0, \quad \forall v, \forall i, \forall j, \\
\mathbf{G}^{v} = \mathbf{G}^{v} \mathbf{Z}^{v} + \mathbf{E}^{v}, \quad \forall v
\end{aligned}$$
(1) Update Z and E (ADM)

(2) Update G and W

1. Update W (dual form)

2. Update G (closed-form)

and W

Domain Adaptation: Formulation

$$\begin{split} \min_{\mathbf{Z}^{v}, \mathbf{W}^{v}, \mathbf{G}^{v}} \sum_{v=1}^{V} &(\frac{1}{2} \| \mathbf{W}^{v} \|_{F}^{2} + C \sum_{i=1}^{n} \xi_{i}^{v} + C \sum_{i=1}^{n} \sum_{j=1}^{m} \epsilon_{ij}^{v} \\ &+ \lambda_{1} \| \mathbf{W}^{v} - \mathbf{G}^{v} \|_{F}^{2} + \lambda_{2} \| \mathbf{E}^{v} \|_{F}^{2} + \lambda_{3} \| \mathbf{Z}^{v} \|_{*}) \\ &+ \frac{\gamma}{2} \sum_{v, \tilde{v}: v \neq \tilde{v}} \| \mathbf{Z}^{v} - \mathbf{Z}^{\tilde{v}} \|_{F}^{2} + \underbrace{\theta \sum_{v=1}^{V} \Omega(\mathbf{W}^{v}, \mathbf{L}^{v}, \mathbf{U}^{v})}_{v=1} \\ \text{s.t.} \quad \mathbf{w}_{i}^{v'} \mathbf{x}_{i}^{v+} \geq 1 - \xi_{i}^{v}, \quad \xi_{i}^{v} \geq 0, \quad \forall v, \forall i, \\ &\mathbf{w}_{i}^{v'} \mathbf{x}_{j}^{v-} \leq -1 + \epsilon_{ij}^{v}, \quad \epsilon_{ij}^{v} \geq 0, \quad \forall v, \forall i, \forall j, \\ \mathbf{G}^{v} = \mathbf{G}^{v} \mathbf{Z}^{v} + \mathbf{E}^{v}, \quad \forall v, \end{split}$$

where $\Omega(\mathbf{W}^v, \mathbf{L}^v, \mathbf{U}^v) = \operatorname{tr}(\mathbf{W}^{v'}\mathbf{U}^v\mathbf{L}^v\mathbf{U}^{v'}\mathbf{W}^v)$

Experiments: Domain Generalization

Dataset && Features

- □ ACT 4^2
- RGB and Depth (2 Views)
- 4 Camera-viewpoints (4 Domains)
- 6000-dim IDT-BOW
- ORGBD
- RGB and Depth (2 Views)
- 2 different environments (2 Domains)
- 6000-dim IDT-BOW
- □ Office-Caltech
- 2 different features: 4096-dim Caffe-6 and Decaf-6 features (2 Views)
- Amazon, Webcam, Dslr, and Caltech (4 Domains)

Experimental setting

We mix several domains as the source domain for training classifiers and use the remaining domains as the target domain for testing.

Experiments: Domain Generalization

Experiments: Domain Generalization

➢ Results

Dataset	$ACT4^2$	ORGBD	Office
SVM [10]	56.40	48.67	84.52
ESVM [29]	58.60	51.79	86.14
LRCS [11]	59.72	52.68	85.28
SVM-2K [16]	59.68	50.00	86.10
KCCA [21]	57.72	51.34	86.33
DICA [30]	59.10	47.32	86.12
LRESVM [38]	62.61	53.57	87.04
[18](match)	57.83	50.00	86.47
[18](ensemble)	58.42	51.79	86.06
[23](match)	55.21	44.65	85.75
[23](ensemble)	57.78	50.45	84.81
Sub-Cate [22]	59.71	52.68	86.64
MVDG	66.16	55.81	88.13

Recognition accuracy of domain generalization

Experiments: Domain Adaptation

Baselines

Experiments: Domain Adaptation

> Results

Recognition accuracy of domain adaptation

Dataset	$ACT4^2$	ORGBD	Office
SVM [10]	56.40	48.66	84.52
DASVM [6]	60.22	50.45	85.60
KMM [24]	59.46	52.12	86.34
TCA [32]	59.12	48.66	85.79
SA [17]	63.42	52.24	86.79
DIP [1]	58.86	54.46	86.58
GFK [19]	60.61	53.13	86.22
SGF [20]	56.17	52.23	85.78
Co-training [4]	62.15	53.13	87.96
Co-LapSVM [34]	61.57	52.68	88.20
Coupled [3]	64.79	54.02	86.48
MVTL_LM [41]	63.70	55.36	87.76
MDT [39]	64.97	54.46	86.87
LRCS [11]	62.07	55.81	86.12
MVDA	68.67	58.04	91.04

Thanks for your attention!

