
Project 3 Report: Feature Encoding

Mingquan Feng
517030910373

Mingjie Li
517030910344

Shangning Xu
517030910384

Abstract

Feature encoding is the technique of constructing a global feature vector from a
image’s set of local descriptors, extracted by digital image processing methods like
SIFT. In this project, we experiment with different approaches to local descriptor
extraction, like SIFT and Selective search, and different approaches to feature
encoding, like bag of words, VLAD, Fisher vector, super vector and LLC. Encoded
features from the Animals with Attributes 2 dataset are used to train SVM and deep
neural networks to compare the strength of different local descriptor extraction and
feature encoding methods. Our experiment shows that, while selective search with
DNN gives the best accuracy, the accuracy is inferior to that of pre-extracted deep
learning features with linear SVM.

1 Introduction

In this project, we experiment with two feature extraction methods, SIFT [6] and selective search [9],
and five feature encoding methods, bag of words [4], VLAD [5], Fisher vector [8], super vector [11]
and locality-constrained linear coding (LLC) [10]. For classifiers, SVM with rbf kernel and ResNet
for deep neural networks (DNN) are used.

This paper is organized as follows: Section 2 and 3 introduce the theory that underlies various
methods of local descriptor extraction and feature encoding, respectively. Section 4 present our
experiments with these methods and analysis of results. Section 5 concludes the report.

2 Local Descriptor Extraction

2.1 Scale-Invariant Feature Transform (SIFT)

The scale-invariant feature transform (SIFT)[6] is a feature detection algorithm in computer vision to
detect and describe local features in images. The pipeline of SIFT detection can be summarized in
the following manner.

1. Scale-space extrema detection: Inspired by the behavior of complex cells in the cerebral
cortex of mammalian vision, SIFT first constructs the image pyramid and the difference-
of-gradient (DoG) pyramid. For an original image I(x, y), we can first build a pyramid by
upsampling or downsampling to generate an image pyramid. Then we expand each level by
using Gaussian filters G(x, y, σ) with different bandwidths to generate images with different
blurring levels L(x, y, σ). (For simplicity, I omit the index to indicate the scale (or size) of
the image.)

L(x, y, σ) = I(x, y) ∗G(x, y, σ), where G(x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(1)

CS245: Principles of Data Science, 2020 Spring, SJTU, Instructor: Li Niu

Figure 1: After scale space extrema are detected (their location being shown in the leftmost image)
the SIFT algorithm discards low-contrast keypoints (remaining points are shown in the middle image)
and then filters out those located on edges. Resulting set of keypoints is shown on last image.

Keypoints are then taken as maxima/minima of the Difference of Gaussians (DoG) that
occur at multiple scales. Specifically, a DoG image D(x, y, σ) is given by

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2)

Once DoG images have been obtained, keypoints are identified as local minima/maxima of
the DoG images across scales. This is done by comparing each pixel in the DoG images to
its eight neighbors at the same scale and nine corresponding neighboring pixels in each of
the neighboring scales. If the pixel value is the maximum or minimum among all compared
pixels, it is selected as a candidate keypoint.

2. Keypoint localization: Scale-space extrema detection produces too many keypoint candi-
dates, some of which are unstable. The next step in the algorithm is to perform a detailed
fit to the nearby data for accurate location, scale, and ratio of principal curvatures. This
information allows points to be rejected that have low contrast (and are therefore sensitive
to noise) or are poorly localized along an edge. The detailed algorithm can bee seen in
Wikepedia-SIFT. Figure 1 shows a visualization of the discarding of unstable candidate
points.1

3. Orientation assignment: In this step, each keypoint is assigned one or more orientations
based on local image gradient directions. This is the key step in achieving invariance to
rotation as the keypoint descriptor can be represented relative to this orientation and therefore
achieve invariance to image rotation.

m(x, y) =
√

[L(x+ 1, y)− L(x− 1, y)]2 + [L(x, y + 1)− L(x, y − 1)]2

θ(x, y) = atan2(L(x, y + 1)− L(x, y − 1), L(x+ 1, y)− L(x− 1, y))
(3)

The peaks in this histogram correspond to dominant orientations. Once the histogram is
filled, the orientations corresponding to the highest peak and local peaks that are within 80%
of the highest peaks are assigned to the keypoint.

4. Keypoint descriptor: Based on the orientation calculated in the previous step, we can
calculate a rotation invariant descriptor for each key point. This is done by using the set of
orientation histograms created on 4× 4 pixel neighborhoods with 8 bins each.

In conclusion, this approach transforms an image into a large collection of local feature vectors, each
of which is invariant to image translation, scaling, and rotation, and partially invariant to illumination
changes and affine or 3D projection.

2.2 Selective Search

An image usually contains much information. The objects in an image usually have different shape,
scale, color and texture. To detect an object from an image is very difficult. Selective Search[9]
is a method to address this problem based on merging of similar regions. This algorithm can be
summarized as the following pipeline.

1. Generate a set of regions R = {r1, r2, . . . , rn} based on [2].

1From https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

2

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

2. Calculate the similarities of neighboring region pairs.

3. Iteratively merge the most similar neighboring regions until there is no neighboring regions.

In selective search, there are 4 metrics jointly for calculating the similarity. When calculating the
similarities, we usually normalize them into [0, 1], where 1 denotes that the similarity is maximal.

scolor(ri, rj) measures color similarity. Specifically, for each region we obtain one-dimensional color
histograms for each color channel using 25 bins. This leads to a color histogramCi = {c1i , c2i , . . . , cni }
for each region ri with dimensionality n = 75 when three color channels are used. The colour
histograms are normalized using the L1 norm. Similarity is measured using the histogram intersection:

scolor(ri, rj) =

n∑
k=1

min(cki , c
k
j) (4)

stexture(ri, rj) measures texture similarity. We take Gaussian derivatives in eight orientations using
σ = 1 for each color channel. For each orientation for each color channel we extract a histogram
using a bin size of 10. This leads to a texture histogram Ti = {t1i , t2i , . . . , tni } for each region ri with
dimensionality n = 240 when three color channels are used. Texture histograms are normalised
using the L1 norm. Similarity is measured using histogram intersection:

stexture(ri, rj) =

n∑
k=1

min(tki , t
k
j) (5)

ssize(ri, rj) encourages small regions to merge early. This forces regions in S, i.e. regions which
have not yet been merged, to be of similar sizes throughout the algorithm. This is desirable because it
ensures that object locations at all scales are created at all parts of the image. For example, it prevents
a single region from gobbling up all other regions one by one, yielding all scales only at the location
of this growing region and nowhere else. ssize(ri, rj) is defined as the fraction of the image that ri
and rj jointly occupy:

ssize(ri, rj) = 1− size(ri) + size(rj)

size(im)
(6)

sfill(ri, rj) measures how well region ri and rj fit into each other. The idea is to fill gaps: if ri is
contained in rj it is logical to merge these first in order to avoid any holes. On the other hand, if
ri and rj are hardly touching each other they will likely form a strange region and should not be
merged. To keep the measure fast, we use only the size of the regions and of the containing boxes.
Specifically, we define BBij to be the tight bounding box around ri and rj . Now sfill(ri, rj) is the
fraction of the image contained in BBij which is not covered by the regions ri and rj :

sfill(ri, rj) = 1− size(BBij)− size(ri)− size(rj)

size(im)
(7)

In [9], the authors used a combination of the above four as the final similarity measure.

s(ri, rj) = a1scolor(ri, rj) + a2stexture(ri, rj) + a3ssize(ri, rj) + a4sfill(ri, rj) (8)

3 Feature encoding

3.1 Bag of words

The bag-of-words model [4] in computer vision is inspired by the synonymous model in text mining,
where each document is seen as a multiset (“bag”) of words, ignoring order information, and the
bag of words is a sparse vector of occurrence counts of words. For feature encoding, the following
procedure is used to compute bags of words:

3

1. Learning a codebook: all images’ local features are pooled and applied K-Means clustering.
The result of clustering with K clusters is a codebook of size K.

2. Encoding: For each image, its local features are assigned a cluster. The encoded feature
vector f is a vector of occurrence counts of cluster assignment. That is,

f [i] = number of local descriptors that belong to cluster i (9)

Jurie and Triggs [4] suggest that encoding features with K-Means clustering has the adverse effect
that clusters centers are distributed around dense neighborhoods, which mainly consist of generic
features prevalent in most images, like edges. However, neighborhoods that are most informative for
classification tend to have intermediate frequencies. As a result, highly-discriminant neighborhoods
occur rarely, and when they occur, there are two few of them to “swing” the prediction.

3.2 Vector of locally aggregated descriptors

Vector of locally aggregated descriptors (VLAD), first prosposed by Jégou et al. [5], preserves the
first-order information in descriptors. As for bag of words, we first learn a codebook C = c1, . . . , ck
of k visual words with k-means. Each local descriptor x is associated to its nearest visual word
ci = NN(x). The idea of the VLAD descriptor is to accumulate, for each visual word ci, the
differences x− ci of the vectors x assigned to ci. This characterizes the distribution of the vectors
with respect to the center.

Assuming the local descriptor to be d-dimensional, the dimension D of our representation is D = kd.
In the following, we represent the descriptor by vi,j , where the indices i = 1, . . . , k and j = 1, . . . , d
respectively index the visual word and the local descriptor component. Hence, a component of v is
obtained as a sum over all the image descriptors:

vi,j =
∑

x such that NN(x)=ci

xj − ci,j (10)

where xj and ci,j respectively denote the jth component of the descriptor x considered and of its
corresponding visual word ci. The vector v subsequently L2-normalized by v := v/||v||2.

Figure 2: Images and corresponding VLAD descriptors, for k = 16 centroids (D = 16× 128). The
components of the descriptor are represented like SIFT, with negative components in red.

Figure 2 shows that the descriptors are relatively sparse (few values have a significant energy) and
very structured: most high descriptor values are located in the same cluster, and the geometrical
structure of SIFT descriptors is observable. For sufficiently similar images, the closeness of the
descriptors is obvious.

4

3.3 Fisher vector

Perronnin and Dance [7] first proposed a formulation that is similar to Fisher vector (FV). The
problem at hand is image categorization, that is, assigning one or multiple labels to an image based
on its semantics content, instead of feature encoding. In their formulation, the idea is to characterize
the training images X = {xt, 1, . . . , T} with the gradient vector ∇λ log p(X|λ), where λ is the
parameter for PDF p. p is approximated with a GMM model with λ = {wi, µi,Σi, i = 1, . . . , N}.
The name “Fisher vector” and its application to feature encoding appears in [8], as introduced below.

3.3.1 Fisher kernel

Let X = {xt, t = 1 . . . T} be a sample of T observations xt ∈X . Let uλ be a probability density
function which models the generative process of elements in X where λ denotes the vector of M
parameters of uλ. In statistics, the score function is given by the gradient of the log-likelihood of the
data on the model:

GXλ = ∇λ log uλ(X) (11)

This gradient describes the contribution of the individual parameters to the generative process. In
other words, it describes how the parameters of the generative model uλ should be modified to better
fit the data X .

From the theory of information geometry, a parametric family of distributions U = {uλ, λ ∈ RM}
can be regarded as a Riemanninan manifold MΛ with a local metric given by the Fisher information
matrix Fλ ∈ RM×M :

Fλ = Ex∼uλ
[
GXλ G

XT
λ

]
(12)

The similarity between two samples X and Y using the Fisher kernel (FK) can be defined as:

KFK(X,Y) = GXTλ F−1
λ GYλ (13)

Since Fλ is positive semi-definite, so is its inverse. Using the Cholesky decomposition F−1
λ = LTλLλ,

the FK can be re-written explicitly as a dot-product:

KFK(X,Y) = GXT
λ G Y

λ (14)

where
GX
λ = LλG

X
λ = Lλ∇λ log uλ(X) (15)

We call this normalized gradient vector the FV of X . The dimensionality of the FV GX
λ is equal to

that of the gradient vector GXλ .

3.3.2 Fisher vector in feature encoding

To apply FK to feature encoding, let X = {xt, t = 1 . . . T} be the set of D-dimensional local
descriptors extracted from an image, e.g. a set of SIFT descriptors. Assuming that the samples are
independent, the FV can be rewritten as follows:

GX
λ =

T∑
t=1

Lλ∇λ log uλ(xt) (16)

The GMM is again chosen to approximate the probability distribution uλ, with λ = {wk, µk,Σk, k =
1, . . . ,K}, then

uλ(x) =

K∑
k=1

wkuk(X) (17)

where uk denotes the Gaussian k. We assume diagonal covariance matrices which is a standard
assumption and denote by σ2

k the variance vector, i.e. the diagonal of Σk. Given the GMM model,

5

the normalized gradients are

GX
αk

=
1
√
wk

T∑
t=1

(γt(k)− wk) (18)

GX
µk

=
1
√
wk

T∑
t=1

γt(k)
xt − µk
σk

(19)

GX
σk

=
1
√
wk

T∑
t=1

γt(k)
1√
2

[
(xt − µk)2

σ2
k

− 1

]
(20)

Note that GX
αk

is a scalar while GX
µk

and GX
σk

are D-dimensional vectors. The final FV is the
concatenation of the gradients GX

αk
, GX

µk
, GX

σk
for k = 1, . . . ,K and is therefore of dimension

E = (2D + 1)K. The FV is further normalized by the sample size T .

3.4 Super vector encoding

Super vector encoding [11] is similar to the Fisher encoding. The clustering algorithm can be hard,
i.e. K-means, or it can be soft, i.e. GMM. Here we adopt the latter.

qki =
p (xi|µk,Σk)πk∑K
j=1 p (xi|µj ,Σj)πj

, k = 1, . . . ,K

pk =
1

N

N∑
i=1

qik

uk =
1
√
pk

N∑
i=1

qik (xt − µk)

sk = s
√
pk

fsuper =
[
s1,u

>
1 , . . . , sK ,u

>
K

]>
where s is a constant chosen to balance sk with uk numerically. Here sk is a size-1 scaler, denoting
the mass of each cluster (0-order information). uk is a size-D vector, denoting difference between
local features and cluster centers (1-order information). Therefore, fsuper is a size-K(D+1) vector.
Compared to the Fisher encoding, the super vector encoding differs at:

1. Super vector encoding considers 0-order and 1-order information, therefore its vector size is
KD+K, while Fisher encoding considers 1-order and 2-order information and vector size is
2KD.

2. super vector encoding normalizes each cluster by the square root of the posterior probability√
pk rather than of the prior probability

√
πk.

3.5 Locality-constrained Linear Coding (LLC)

Locality-constrained Linear Coding (LLC) [10] explicitly encourages the coding to be local, and
theoretically pointed out that under certain assumptions locality is more essential than sparsity, for
successful nonlinear function learning using the obtained codes. Specifically, let X be a set of D-
dimensional local descriptors X = [x1,x2, . . . ,xN] ∈ RD×N , and B = [b1,b2, . . . ,bM] ∈ RD×M
is a codebook with M entries, the output coding is C ∈ RM×N .

arg min
C,B

N∑
i=1

‖xi −Bci‖2 + λ ‖di � ci‖2

st. 1>ci = 1,∀i
‖bj‖2 ≤ 1,∀j

6

where di ∈ RM is the locality adaptor that gives different freedom for each basis vector proportional
to its similarity to the input descriptor xi.

di = exp

(
dist (xi,B)

σ

)
= exp

(
[dist (xi,b1) , . . . ,dist (xi,bM)]

T

σ

)
Such optimization problem can be solved by solved using Coordinate Descent method to iteratively
optimizing C(B) based on existing B(C).

Notice that ‖di � ci‖2 is locality regularization term, and it has several attractive properties:

1. Better reconstruction: in LLC, each descriptor is more accurately represented by multiple
bases, and LLC code captures the correlations be- tween similar descriptors by sharing
bases.

2. Local smooth sparsity: the explicit locality adaptor in LLC ensures that similar patches will
have similar codes, therefore it avoids over-completeness of the codebook.

3. Analytical solution: solution of LLC can be derived analytically, and has fast approximation,
therefore it avoids computationally demanding optimization procedures.

4 Experiments

4.1 Dataset

Download Animals with Attributes (AwA2) dataset 2. This dataset consists of 37322 images of 50
animal classes. We randomly split the images in each category into 60% for training and 40% for
testing, using stratified sampling. We also use 5-fold cross-validation within the training set to select
optimal parameters.

4.2 SIFT

In our experiments, we implemented SIFT feature extraction using the opencv3 library in Python. I.e.
the function cv2.xfeatures2d.SIFT_create() is used to create a SIFT detector. For the three
feature encoding methods, we implemented them by ourselves, except for the clustering part.

The input of a SIFT detector is a gray-scale image, so we need to transform the RGB image into
gray-scale via the cv2.cvtColor function. To achieve this, the second parameter of this function
should be set as cv2.COLOR_BGR2GRAY. The detectAndCompute method of the SIFT detector will
return (1) NSIFT key points and (2) their local descriptors of 128 dimensions. To have a intuitive
understanding of the statistical order of NSIFT , we visualized the histogram of NSIFT of the AwA2
dataset as a preliminary try. Figure 3 shows a histogram of NSIFT .

As we can see, the average and median of the number of key points in a single image is usually large.
Therefore, we need to set a constraint on the number of key points Nkp selected. Figure 4 shows an
example of detecting SIFT key points (annotated by red circles in figures) with different Nkp. Figure
4(a) is the non-constrained case, where all 6764 key points are selected. Then we tried different Nkp,
namely 2500,500,100 in Figure 4(b)4(c)4(d) respectively. We can find that when Nkp is relatively
large, there is still a lot of background information included. However, when Nkp is small, the key
points will focus on the main parts in the image (i.e. animals in our images, see Figure 4(d)).

This is one extreme case – when the number of key point is so large that it includes too much
background information. It is solved by constraining the number of key points detected in our
experiment. Another extreme case is that, there is no key point in one image. This is due to the
extreme smoothness of the input image. Figure 5 gives one example (from dolphin_10180.jpg in
the AwA2 dataset). For this case, we have no choice but drop these images. Fortunately, this is the
only example of this case.

2https://cvml.ist.ac.at/AwA2/
3https://opencv.org/

7

Stat. of 𝑁𝑆𝐼𝐹𝑇:

- Min: 0

- Max: 45375

- Mean: 4295.95

- Median: 3554

- Std: 3342.29

0 10000 20000 30000 40000
𝑁𝑆𝐼𝐹𝑇

0

100

200

300

400

500

600

700

Figure 3: The distribution of NSIFT in AwA2 dataset, along with some of its statistical values.

(a) (b) (c) (d)

Figure 4: Constrain the number of key points Nkp selected. The leftmost figure is SIFT without this
constraint (in this case NSIFT = Nkp = 6764), and the rest are Nkp = 2500, 500, 100 respectively.

After obtaining the local descriptors in each image, we can see each image as a bag of local descriptors.
In the next step, we performed feature encoding (i.e. BoW, VLAD, Fisher Vector) to generate global
descriptors of each image. The pipeline is to learn a codebook first, and then generate global features
according to the clusters in the learned codebook.

Due to the constraint of memory and excessive computational cost, it is impossible to learn a codebook
using all local descriptors throughout the dataset. Consider the case that there are 100 local descriptors
in each image, then we need to perform clustering on a dataset of size 3732200 vectors if we use
all the data. Therefore, in our experiments, we empirically chose the number of local descriptors
sampled in each class be 5×Ncluster, where Ncluster is the cluster number. For example, when we
learn a codebook with 128 clusters, a total of 32000 samples of local descriptors will be sampled out.

The generated global features are fed into an SVM with rbf kernel and C = 1.0 for classification. In
our experiments, we mainly focus on the performance of different feature encoding methods, different
settings of Nkp, and different settings of Ncluster.

Figure 5: An example of failing to detect even one single SIFT key point in one image.

8

First, we compare different settings of Nkp for classification. In our experiment, we fix the number
of clusters Ncluster to be 128. Since the dimension of local descriptors is 128, the dimension of
BoW, VLAD and Fisher are 128, 16384, 32768 dimension. For fair comparison and computational
efficiency, we reduce the dimension to 128 by PCA in the latter 2 cases. We also perform L2
normalization to the features encoded before training the SVM. Table 1 shows the result. As we can
see, a larger Nkp will lead to higher performance. This is because when more key points in one image
are considered, more types of feature patterns can be encoded. This result is in line with our intuition.

Table 1: Classification accuracy on training and testing set using different Nkp with Ncluster = 128.

BoW VLAD Fisher Super LLC
Nkp train test train test train test train test train test
10 38.6% 12.4% 44.2% 12.9% 38.8% 12.5% 32.2% 32.9% 12.8% 12.5%

100 46.1% 20.8% 55.4% 25.7% 47.2% 21.9% 52.5% 52.3% 22.7% 22.9%
500 45.7% 27.7% 60.1% 35.1% 48.0% 58.2% 54.2% 52.9% 32.8% 32.5%

Then, we considered the effect of changing the number of clusters Ncluster. We fix the number of key
points extracted in each input image, and explore the performance difference of different Ncluster.
When training SVM, for the case of Ncluster = 128, we reduce VLAD and Fisher features into 128
feature vectors. For Ncluster = 256, reduce to 256; For Ncluster = 512, reduce to 512. Table 2
and Table 3 show the result, which use Nkp = 100 and Nkp = 500 respectively. As we can see,
though a larger cluster number may lead to an increase in performance, the increase is small. This is
because the number of clusters is enough for different types of patterns, so a larger Ncluster does
not help much. We think Nkp may determine the richness of local patterns, and Nkp may determine
a saturated Ncluster, for cluster numbers larger than which, the performance will not be boosted
significantly.

Table 2: Classification accuracy on training and testing set using different Ncluster with Nkp = 100.

BoW VLAD Fisher Super LLC
Ncluster train test train test train test train test train test

128 46.1% 20.8% 55.4% 25.7% 47.2% 21.9% 52.5% 52.3% 22.7% 22.9%
256 57.0% 21.7% 65.0% 25.9% 59.2% 22.7% 59.9% 59.5% 24.2% 23.7%
512 68.4% 22.3% 75.3% 24.2% 70.3% 23.5% 65.3% 64.2% 30.3% 29.5%

Table 3: Classification accuracy on training and testing set using different Ncluster with Nkp = 500.

BoW VLAD Fisher Super LLC
Ncluster train test train test train test train test train test

128 45.7% 27.7% 60.7% 35.1% 48.0% 28.2% 54.2% 52.9% 32.8% 32.5%
256 56.5% 28.8% 68.9% 35.3% 59.1% 29.8% 58.3% 55.9% 39.1% 39.8%
512 66.7% 30.1% 77.8% 34.3% 69.3% 30.4% 57.3% 58.8% 41.3% 40.4%

The comparison of different methods of feature encoding can also be seen in Table 123. For perfor-
mance, VLAD usually performs the best. BoW may suffer from insufficient encoded information,
while Fisher may suffer from the non-convergence of the GMM. We did not record the time cost,
but we found Bow is the fastest and LLC is the slowest. With the trade off between time cost and
performance, we believe VLAD is a good feature encoding method.

4.3 Selective Search

In our experiments, we used the selectivesearch package4 in Python to extract region proposals.
In our experiments, we used one NVIDIA GeForce RTX2080Ti GPU to train the models. We
have done two parts of experiments in this section, as is shown in Figure 6. For the baseline, we
directly train ResNet-14/32[3] for the training set with 60% data and test the model on the testing set
containing the rest 40%. Their performance on testing set is 78.5% and 77.6% respectively. Then we
compare this end-to-end training with feature encoding methods.

4https://github.com/AlpacaDB/selectivesearch

9

…

1024

768

224

resize

Selective

Search

Feature

Encoding

Baseline:

end-to-end

Figure 6: For comparison of the deep feature encoding method, we learned an end-to-end model to
compare its result with selective search.

Selective search is a useful method to extract region proposals in an unsupervised manner. For the
sake of convenience, we just perform selective search on the resized (224× 224) images. Then one
problem is how to transform these region proposals into feature vectors. We searched some literatures
on region proposal and feature encoding and did not find a standard way. Therefore, we defined 3
intuitive ways to achieve this.

224

224

224

224

224

method 1
original

method 2
topleft

method 3
resize

…

…

…

CNN

CNN

CNN

local descriptor

local descriptor

local descriptor

Figure 7: The pipeline of how to transform one region proposal to its corresponding local descriptor.
We have tried 3 methods: (1) original (2) topleft (3) resize.

As is shown in Figure 7, for each region proposal, we can use the 3 methods to transform it into a
fix-length feature vector. The first method (termed original) is to force other pixels except for the
region to zero. This method not only preserves the pattern information but positional information as
well. The second method (termed topleft) is to move the proposed region to the topleft of the input.
In this way, we only focus on the deep patterns of proposed regions. The third method (termed resize)
is to resize the proposed region to (224× 224). This is an intuitive method to let the input fit in with
the input requirement of the DNN.

Then we can extract features using a DNN. In this part we used the ResNet-34 pretrained on the 60%
AwA2 dataset, as is shown in Figure 7. Table 4 shows the result. As we can see, the performance
of original and topleft is similar to each other. This may indicate that DNNs mainly focus on deep
features inside the input image, instead of the position of a certain pattern inside an image. This may
in some way explain the success of DNNs.

Another thought is to use different DNNs to extract features from the region proposals. For fair
comparison, we changed the AwA2 pretrained ResNet34 into an ImageNet pretrained one. The
results are shown in Table 5. As we can see, the performance is better than results in Table 4. This is
because models trained on ImageNet may encode more feature patterns, while models trained merely
on AwA2 dataset may encode irrelevant noises, which leads to overfitting.

10

Table 4: Classification accuracy on training and testing set using the AwA2 pretrained ResNet34
and different methods.

BoW VLAD Fisher
train test train test train test

original 95.7% 69.5% 91.6% 68.7% 26.2% 8.9%
topleft 93.5% 69.9% 90.6% 68.5% 31.7% 12.2%
resize 38.9% 14.3% 48.1% 16.0% 35.1% 12.8%

Table 5: Classification accuracy on training and testing set using the ImageNet pretrained ResNet34
and different methods.

BoW VLAD Fisher
train test train test train test

original 87.3% 80.3% 87.4% 82.9% 81.2% 65.1%
topleft 87.7% 82.2% 87.2% 83.3% 52.1% 32.9%
resize 38.2% 17.3% 54.6% 24.2% 37.4% 15.3%

4.4 LLC

We use implementation of LLC in paper [1], instead of original paper for simplicity. We set parameters
M = 32 and β = 1e−6. Notice that this version of LLC is does not iteratively optimize codebook B
and coding C. Instead, it directly takes clustering as codebook, then calculate analytical solution of
coding. We use GMM with covariance_type =′ diag′ as clustering method. In our experiment, we
find that eocoding process of LLC is very time-consuming, it cost about 10x time than Super vector.
In calculation of LLC coding, it requires matrix multiplication, matrix inverse and sorting, which are
all complex operations. However, the accuracy of LLC is similar with BoW, which is a very efficient
algorithm.

5 Conclusion

In this report, we implement and evaluate different local descriptor extraction algorithms and feature
encoding algorithms. Specifically, we experiment SIFT and Selective Search to extract local descrip-
tors, and we use BoW, VLAD, Fisher vector, Super vector and LLC to encode local features. We
observe that Selective Search can effectively enhance final accuracy of classifier, and that VLAD is
optimal algorithm considering time-accuracy trade off.

References
[1] Ken Chatfield, Victor S Lempitsky, Andrea Vedaldi, and Andrew Zisserman. The devil is in the

details: an evaluation of recent feature encoding methods. In BMVC, volume 2, page 8, 2011.

[2] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation.
International journal of computer vision, 59(2):167–181, 2004.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[4] F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1, volume 1, pages 604–610
Vol. 1, 2005.

[5] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact
image representation. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 3304–3311, 2010.

[6] David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the
seventh IEEE international conference on computer vision, volume 2, pages 1150–1157. Ieee,
1999.

11

[7] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In
2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[8] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Image classification
with the fisher vector: Theory and practice. International journal of computer vision, 105(3):
222–245, 2013.

[9] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective
search for object recognition. International journal of computer vision, 104(2):154–171, 2013.

[10] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong Gong. Locality-
constrained linear coding for image classification. In 2010 IEEE computer society conference
on computer vision and pattern recognition, pages 3360–3367. IEEE, 2010.

[11] Xi Zhou, Kai Yu, Tong Zhang, and Thomas S. Huang. Image classification using super-vector
coding of local image descriptors. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios,
editors, Computer Vision – ECCV 2010, pages 141–154, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. ISBN 978-3-642-15555-0.

12

	Introduction
	Local Descriptor Extraction
	Scale-Invariant Feature Transform (SIFT)
	Selective Search

	Feature encoding
	Bag of words
	Vector of locally aggregated descriptors
	Fisher vector
	Fisher kernel
	Fisher vector in feature encoding

	Super vector encoding
	Locality-constrained Linear Coding (LLC)

	Experiments
	Dataset
	SIFT
	Selective Search
	LLC

	Conclusion

