
Cyclic Data Augmentation Generative Adversarial Network

Siyuan Zhou
120033910030

Yuanhang Yin
120033910057

Yunfan He
120033910183

Abstract

Few-shot generation problems, mainly based on deep
generative models, have become an attractive direction of
artificial intelligence in recent years, which could strongly
augment training data, alleviate overfitting, and provide
creative images or music. However these problems are
difficult to solve due to the lack of data. Antoniou et al.
proposed an effective model Data Augmentation Genera-
tive Adversarial Networks (DAGAN) using generative ad-
versarial network, but suffer from unrealistic results. In-
spired by DAGAN, we proposed Cyclic Data Augmentation
Generative Adversarial Network (CDAGAN), which add a
cyclic supervisor between input and output to learn the im-
plicit invariance among images of the original class. Exper-
imental results of our proposed method on various datasets
Omniglot, EMNIST, and VGG-Faces show remarkable im-
provements compared to DAGAN, which demonstrate the
effectiveness of our model.

1. Introduction

Deep neural networks (DNN) have achieved extraordi-
nary results, through the training of large amounts of data.
In the past decade, DNN has been widely used in im-
age classification, speech recognition, object detection, ma-
chine translation, and other fields. However, in some cases,
it is difficult to obtain a large amount of data, which cre-
ates the problem of few-shot learning. In these problems
such as few-shot image classification, we need to learn a
model based on a very limited dataset to achieve the goal.
Due to the lack of data and the complexity of traditional
deep neural network models, methods based on traditional
neural networks are prone to overfit, resulting in poor re-
sults in the test set. Much research in the field of few-
shot learning has obtained notable results. For example, the
MAML [1] proposed by Finn et al. has achieved excellent
results in the field of few-shot image classification through
meta-learning. Data augmentation can also be applied to
few-shot learning, based on a given small number of train-
ing samples, more diverse and realistic new samples can be
generated. This requires us to use the method of genera-

tive models to obtain the implicit distribution of the training
data.

Deep generative models are one of the most powerful
and promising directions in the field of generative mod-
els, which have achieved unprecedented performance and
have been more and more widely used in recent years. In
these models by using the combination of conditional dis-
tributions defined by deep neural networks, the generation
process learns the density function of the samples through
deep neural networks (Variational Auto Encoder) or learns
an implicit density model to directly generate new samples
in the same distribution (Generate Adversarial Network).
Due to the powerful fitting capabilities of deep neural net-
works, deep generative models can generate realistic sam-
ples. Among them, the GAN-based models have achieved
promising results in various domains like image generation,
attracting a lot of attention in the field of machine learning.
However, a major bottleneck of these generative models is
the need for a large amount of training data and training
time to better fit these data and generate samples from the
same distribution, which limits the use of deep generative
models in the field of data augmentation. Therefore, it is
necessary to learn a general generative model so that it can
generate new images of the same category based on only a
few images of a new category. This is the problem of few-
shot image generation, which is the task we focus on.

In the few-shot image generation problem, the model is
first trained in the source domain with sufficient training
samples of seen categories. Then, the model will be applied
to the target domain, generate more realistic images for un-
seen categories based on a few samples in these categories.
Previous work such as DAWSON [2] used a GAN, which
first trains the model on seen categories, and then transfers
the trained model to unseen categories for fine-tuning, has
quick adaption to the new unseen categories, and can gen-
erate similar images of these categories. DAGAN [3] uses a
random Gaussian noise to be concatenated with features ex-
tracted from a conditional image to generate more distinc-
tive images. However, the image produced by this method
has small differences compared with the original image, and
it is difficult to obtain satisfactory results that are both real-
istic and different from the original image.

1



In this paper, we follow the architecture of DAGAN and
make further modifications by considering the underlying
invariance between the input images and the output ones. To
be specific, we map the generated images back to the orig-
inal domain and add a reconsturction restriction between
the input domain and the cyclic reconstructed domain. We
change the one-directional mapping to a bi-directional one
to better investigate the invariance knowledge when more
diverse and realistic new samples are generated. In few-
shot image generation, it is crucial to find the class-agnostic
knowledge for transferring from seen categories to unseen
novel categories. We find that the cyclic invariance we in-
vestigate can help with the transferring process and facili-
tate generation for novel categories.

2. Related Work
Data Augmentation. Data augmentation is a technique

that increases the number of training samples by slightly
modifying existing data, or generating new data directly
based on existing data. In training deep learning models,
data augmentation can help suppress over-fitting to obtain
models with better generalization capabilities. Traditional
data augmentation methods, including cropping, rotation,
and adding Gaussian noise, can increase the diversity of
training data. However, this diversity is very limited. In
recent years, advanced data augmentation methods, such as
deep generative models, can dig out the internal distribution
of data, thereby generating more diverse and realistic new
samples. Our work is based on this new data augmentation
method, which can generate more images for training sets.

Generative Adversarial Network. Generative Adver-
sarial Network (GAN) [4] is a deep generative model based
on adversarial learning, which defines two networks gener-
ator and discriminator. GAN can learn the complex density
distribution of the training samples, while the discrimina-
tive network distinguishes the candidates generated by the
generative network based on the training samples. Early un-
conditional GAN is based on a random vector z, which can
generate realistic-looking new samples. Since there is no
need to know the actual data distribution, it has been widely
used in image processing, sequence data, and computer vi-
sion. Furthermore, conditional GAN [] can generate target
images based on one or more conditional images. Some
recent conditional GAN attempts to solve few-shot image
generation, i.e. learn the distribution of images with several
conditional images based on a few training images to gen-
erate new images. The focus of our work is to use GAN to
solve the task of few-shot image generation.

Few-Shot Generation. Few-shot generation is a new
direction of few-shot learning in which feature informa-
tion is extracted from a few samples to obtain the poten-
tial distribution of data, thereby generating new samples.
Early work of few-shot learning, such as Bayesian Program

Learning [5] by Lake et al., learned simple concepts such as
pen stroke by inputting both the images and stroke data, and
hierarchically combined these simple concepts to generate
new images. Rezende et al. [6] used a sequence generation
model and constructed a Variational Auto Encoder (VAE)
with an attention module to serially infer the images to be
generated. Generative Adversarial Network (GAN) based
methods such as DAGAN by Antoniou et al. [3] used an
image conditional generative adversarial network, can learn
meta information from samples in the source domain to gen-
erate new samples in the target domain. Novelly, the match-
ing networks of Bartunov et al. [7] used a memory-assisted
network to quickly learn new concepts through an attention
mechanism. Methods based on combining meta-learning
and GAN, such as DAWSON [2], can quickly adapt to new
domains and obtain new samples by applying the MAML
algorithm [1] to GAN. More recently, Hong et al. proposed
an F2GAN [8] that defines a two-step model that first fuse
conditional images and then fill high-level details to obtain
more realistic and diverse generated images. Our work is
based on DAGAN and further adds an additional cyclic re-
construction process to learn the invariance knowledge dur-
ing the image generation process.

3. Methodology
3.1. Basic Representation

Our work starts from Generative Adversarial Methods,
which are one approach for learning to generate exam-
ples that can match the density of a training dataset D =
{x1, x2, · · · , xND

} of size denoted by ND. The objective
is to minimize a distribution discrepancy measure between
the generated data and the true data. To clearly explain our
method, we first introduce a typical Generative Adversarial
Network (GAN) which can be formed by

z = Ñ(0, I) (1)

v = f(z) (2)

where v are generated vectors and z are latent variables
which follow Gaussian distribution. f is a mapping func-
tions, usually implemented as a neural network. As ex-
pected, v should be able to represent the distribution of data
D and z provides the variation to the generation results.

Specifically, a generative adversarial network can be
used to map out a data augmentation manifold, i.e., DA-
GAN (see Figure 1). Given an input x, we can learn a latent
representation of input r = g(x). By integrating the rep-
resentation of input into the basic form of GAN, we can
acquire the combined formulas in the form of conditional
GAN:

r = g(x) (3)

z = Ñ(0, I) (4)

2



Class c

Data Provider

True Image xi True Image xj

Encoder
Linear 

Projection

zi (Gaussian)

Projected zi ri Low Dim Repr.

Decoder 
(Generator)

Gen Image xg

Fake Distr. (xi, xg) Real Distr. (xi, xj)

Discriminator

Real/Fake

Generator Network Discriminator Network

Figure 1. Architecture of DAGAN. Left: the generator network is composed of an encoder taking an input image (from class c), projecting
it down to a lower dimensional manifold (bottleneck). A random vector (zi) is transformed and concatenated with the bottleneck vector;
these are both passed to the decoder network which generates an augmentation image. Right: the adversarial discriminator network is
trained to discriminate between the samples from the real distribution (other real images from the same class) and the fake distribution
(images generative from the generator network). Adversarial training leads the network to generate new images from an old one that appear
to be within the same class (whatever that class is), but look different enough to be a different sample.

xg = f(z, r) (5)

Now f takes random z and representation r as input to re-
construct x. These formulas follow the basic idea of the
classic conditional GAN, where r is the condition to clarify
the target domain of generation. Intuitively, r can specifie
the domain distribution of the generated images in the con-
ditional GAN model of DAGAN. By virtue of this model,
we can acquire the meaningful representation r∗ = g(x∗) of
any new input x∗. In addition to that, we can generate extra
augmentation data v∗1 , v

∗
2 , . . . that supplements the original

x∗ by sampling z from the standard Gaussian distribution
and feed it to the generative network.

3.2. Cyclic Data Augmentation

As discussed in the last section, traditional DAGAN aug-
ment the input domain by mapping the latent representation
to a new generated domain, implying a kind of unidirec-
tivity knowledge. However, the correlation and coherence
between the original domain and the new domain are not
explicitly supervised. Only the discriminator can tell the
implicit distinction between the two domains.

In order to further investigate the data augmentation abil-
ity of the generative model, we aim to exploit an additional
explicit consistency on the top of the generator network of
DAGAN. Our basic idea is to form a symmetry cycle be-

tween the input and output of the generation process. To
be specific, our goal is to further map the generated value
xg back to the original domain of input x. In this way, we
can form a cycle between the input and the generated out-
put. We call this architecture cyclic-DAGAN (see Figure 2
for details). This kind of cyclic consistency can help the
training process of the generated images because it forces
an additional supervision on the generated domain which
helps to share the discrimination difficulty of the discrimi-
nator. The cyclic-DAGAN in Figure 2 can be represented in
the mathematical form:

r = g1(x) (6)

z = Ñ(0, I) (7)

xg = f1(z, r) (8)

s = g2(xg) (9)

z′ = Ñ(0, I) (10)

xc = f2(z
′, s) (11)

The first three formulas are in the same form as DAGAN.
That is, with a representation function g1 and a mapping

3



Class c

Data Provider

True Image xi True Image xj

Encoder1
Linear 

Projection

zi (Gaussian)

Projected zi ri Low Dim Repr.

Decoder1 
(Generator1)

Gen Image xg Fake Distr. (xi/xc, xg) Real Distr. (xi/xc, xj)

Discriminator

Real/Fake

Generator Network Discriminator Network

Encoder2

si Low Dim Repr.

Linear 
Projection

Projected z'i

z'i (Gaussian)

Decoder2 
(Generator2)

Rec Image xc

Reconstruction 
Cycle Loss Lcyc

Figure 2. Architecture of our cyclic-DAGAN. Cyclic-DAGAN is built based on the architecture of DAGAN (see Figure 1). Left: The
augmentation image xg goes through a secondary encoder to obtain anther lower dimensional manifold (bottleneck) si. A random vector
(z′i) is transformed and concatenated with si; these are both passed to a secondary decoder network which outputs the reconstruction image
xc. A reconstruction cycle loss is employed between xi and xc. Right: The input of the discriminator contains both the original image xi

and the reconstruction image xc. We hope that the discriminator can not distinguish between xi and xc after enough steps of training.

function f1, we obtain the generated image xg from the in-
put image x as the conventional methods do. Symmetri-
cally, we apply another representation function g2 and an-
other mapping function f2 in order to map the generated xg
to a new image domain xc, as seen in the last three for-
mulas. z′ and s are the random vector the intermediate
representation of input for the secondary generation pro-
cess, respectively. For ease of representation, we can use
xg = f1 ◦ g1(x, z) and xc = f2 ◦ g2(xg, z′) to succinctly
express the two generation process. Since we hope that xc
can well represent the characteristic of x from the source
domain, we further employ a reconstruction cycle loss be-
tween these two domains in the L1 form:

Lcyc = ‖xc − x‖1 (12)

3.3. Optimization

The optimization of the overall cyclic-DAGAN network
consists of two main parts: 1) adversarial training and 2)
reconstruction training. We will discuss about these two
parts as follows.

Consider a source domain consisting of data
D = {x1, x2, · · · , xND

} and corresponding target
values {t1, t2, · · · , tND

}. Like the implementation in
DAGAN, we use an improved WGAN critic to learn our
cyclic data augmentation model in an adversarial approach.
The only difference is that our cyclic-DAGAN not only
considers the images from the source domain, but only
those from the reconstructed domain. Therefore, the
WGAN critic takes:

(a) some input data point xi and a second data point xj
from the same class such that ti = tj .

4



(b) some input data point xi and the output xg of the current
generator which takes xi as an input.

(c) the reconstructed output xi,c and a second data point xj
from the same class such that ti = tj .

(d) the reconstructed output xi,c and the generated xg of
the current generator which takes xi as an input.

The above critic not only tries to discriminate the gener-
ated points (b) from the real points (a), but also tries to dis-
criminate the generated points (d) from the reconstructed
points (c). The generator is trained to minimize this dis-
criminative capability as measured by the Wasserstein dis-
tance LWGAN . To be specific, we use LWGAN,src to rep-
resent the Wasserstein distance between the source domain
and the generated domain. We use LWGAN,rec to repre-
sent the Wasserstein distance between the reconstructed do-
main and the generated domain. These two Wasserstein dis-
tances make up the final advasarial loss. Therefore, the final
WGAN loss can be formed by

LWGAN = LWGAN,src + λLWGAN,rec,

where λ is a coefficient that control the weight of the second
distance. At the beginning of training, λ should be small be-
cause the reconstruction quality is low and thus does harm
to the adversarial training quality. When the reconstruction
loss Lcyc gets smaller as the training step goes on, the re-
construction quality becomes better, in which case λ should
be larger. In our design, λ should a function inversely pro-
portional to Lcyc. For simplicity, we use a variation of the
exponential function as the form of function φ:

λ = φ(Lcyc) = e−Lcyc

We can see that λ → 1 when Lcyc → 0 and λ → 0 when
Lcyc →∞.

The final loss of our cyclic-DAGAN model is the sum-
mation of the WGAN loss and the cyclic reconstruction
loss:

Loverall = LWGAN + Lcyc

= LWGAN,src + λLWGAN,rec + Lcyc

= LWGAN,src + e−LcycLWGAN,rec + Lcyc

Our optimization objective is to minimize Loverall:

min LWGAN,src + e−LcycLWGAN,rec + Lcyc

4. Experiment Setups
4.1. Implementation Details

Baseline. We follow DAGAN for most of the settings
and thus directly compare the experimental results of our

Cyclic-DAGAN with them.

Architecture. The two generators we use share the same
architecture but have separate parameters to update. Each
generator consists of a UNet and ResNet, which we hence-
forth call a UResNet. The UResNet generator has a total
of 8 blocks, each block having 4 convolutional layers (with
leaky rectified linear (relu) activations and batch renormal-
isation (batchrenorm) followed by one downscaling or up-
scaling layer. Downscaling layers (in blocks 1-4) were con-
volutions with stride 2 followed by leaky relu, batch nor-
malisation and dropout. Upscaling layers were stride 1/2
replicators, followed by a convolution, leaky relu, batch
renormalisation and dropout. For Omniglot and EMNIST
experiments, all layers had 64 filters. For the VGG-Faces
the first 2 blocks of the encoder and the last 2 blocks of the
decoder had 64 filters and the last 2 blocks of the encoder
and the first 2 blocks of the decoder 128 filters. In addition,
each block of the UResNet generator had skip connections.
As with a standard ResNet, a strided 1x1 convolution also
passes information between blocks, bypassing the between
block non-linearity to help gradient flow. Finally skip con-
nections were introduced between equivalent sized filters at
each end of the network.

We used a DenseNet discriminator, using layer normal-
ization instead of batch normalization; the latter would
break the assumptions of the WGAN objective function.
The DenseNet was composed of 4 Dense Blocks and 4
Transition Layers. We used a growth rate of k = 64 and each
Dense Block had 4 convolutional layers within it. For the
discriminator we also used dropout at the last convolutional
layer of each Dense Block as we found that this improves
sample quality.

We trained each Cyclic-DAGAN for 500 epochs, using
a learning rate of 0.0001, and an Adam optimizer with
Adam parameters of β1 = 0 and β2 = 0.9. For each
classification experiment we used a DenseNet classifier
composed of 4 Dense Blocks and 4 Transition Layers
with a k = 64, each Dense Block had 3 convolutional
layers within it. The classifiers were a total of 17 layers
(i.e. 16 layers and 1 softmax layer). Furthermore, we
applied a dropout of 0.5 on the last convolutional layer
in each Dense Block. The classifier was trained with
standard augmentation: random Gaussian noise was added
to images (with 50% probability), random shifts along x
and y axis (with 50% probability), and random 90 degree
rotations (all with equal probability of being chosen).
Classifiers were trained for 200 epochs, a learning rate of
0.001, and an Adam optmizer with β1 = 0.9 and β2 = 0.99.

Datasets. We use the same datasets as in DAGAN, i.e.,
Omniglot, EMNIST, and VGG-Faces. All datasets were
split randomly into source domain sets, validation domain

5



Experiment ID Samples Per Class Test Accuracy
Omni 5 Standard 5 0.689904
Omni 5 DAGAN Augmented 5 0.821314
Omni 5 CDAGAN Augmented 5 0.842060
Omni 10 Standard 10 0.794071
Omni 10 DAGAN Augmented 10 0.862179
Omni 10 CDAGAN Augmented 10 0.869816
Omni 15 Standard 15 0.819712
Omni 15 DAGAN Augmented 15 0.874199
Omni 15 CDAGAN Augmented 15 0.883094

Table 1. Omniglot CDAGAN Augmented Classification

Experiment ID Samples Per Class Test Accuracy
EMNIST Standard 15 0.739353
EMNIST DAGAN Augmented 15 0.760701
EMNIST CDAGAN Augmented 15 0.772471
EMNIST Standard 25 0.783539
EMNIST DAGAN Augmented 25 0.802598
EMNIST CDAGAN Augmented 25 0.805145
EMNIST Standard 50 0.815055
EMNIST DAGAN Augmented 50 0.827832
EMNIST CDAGAN Augmented 50 0.832134
EMNIST Standard 100 0.837787
EMNIST DAGAN Augmented 100 0.848009
EMNIST CDAGAN Augmented 100 0.857231

Table 2. EMNIST CDAGAN Augmented Classification

sets and test domain sets.
For classifier networks, all data for each character (hand-

written or person) was further split into 2 test cases (for all
datasets), 3 validation cases and a varying number of train-
ing cases depending on the experiment. Classifier training
was done on the training cases for all examples in all do-
mains, with hyperparameter choice made on the validation
cases. Finally test performance was reported only on the
test cases for the target domain set. Case splits were ran-
domized across each test run.

For one-shot networks, Cyclic-DAGAN training was
done on the source domain, and the meta learning done on
the source domain, and validated on the validation domain.
Results were presented on the target domain data. Again in
the target domain a varying number of training cases were
provided and results were presented on the test cases.

Omniglot dataset contains 1623 differents handwritten
characters from 50 different alphabets. Each of the 1623
characters was drawn online via Amazon’s Mechanical
Turk by 20 different people. Each image is paired with
stroke data, a sequences of [x, y, t] coordinates with time
(t) in milliseconds. The Omniglot data was split into source
domain and target domain. The order of the classes was

shuffled such that the source and target domains contain di-
verse samples (i.e. from various alphabets). The first 1200
were used as a source domain set, 1201-1412 as a validation
domain set and 1412-1623 as a target domain test set.

The EMNIST dataset is a set of handwritten character
digits derived from the NIST Special Database 19 and con-
verted to a 8x28 pixel image format and dataset structure
that directly matches the MNIST dataset. The EMNIST
data was split into a source domain that included classes 0-
34 (after random shuffling of the classes), the validation do-
main set included classes 35-42 and the test domain set in-
cluded classes 42-47. Since the EMNIST dataset has thou-
sands of samples per class we chose only a subset of 100 for
each class, so that we could make our task a low-data one.

In the VGG-Face dataset case, we randomly chose 100
samples from each class that had 100 uncorrupted images,
resulting in 2396 of the full 2622 classes available in the
dataset. After shuffling, we split the resulting dataset into a
source domain that included the first 1802 classes. The test
domain set included classes 1803-2300 and the validation
domain set included classes 2300-2396.

6



Experiment ID Samples Per Class Test Accuracy
VGG-Face Standard 5 0.0446948
VGG-Face DAGAN Augmented 5 0.125969
VGG-Face CDAGAN Augmented 5 0.123470
VGG-Face Standard 15 0.39329
VGG-Face DAGAN Augmented 15 0.429385
VGG-Face CDAGAN Augmented 15 0.438982
VGG-Face Standard 25 0.579942
VGG-Face DAGAN Augmented 25 0.584666
VGG-Face CDAGAN Augmented 25 0.601597

Table 3. Face CDAGAN Augmented Classification

Technique Name Test Accuracy
Pixel Distance 0.267
Pixel Distance + DAGAN Augmentations 0.605
Pixel Distance + CDAGAN Augmentations 0.624
Matching Nets 0.938
Neural Statistician 0.931
Prototypical Networks 0.96
Siam-I 0.884
Siam-II 0.92
GR + Siam-I 0.936
GR + Siam-II 0.912
SRPN 0.948
Matching Nets (Local Reproduction) 0.969
Matching Nets + DAGAN Augmentations 0.974
Matching Nets + CDAGAN Augmentations 0.976

Table 4. Omniglot One-shot Result. Note that DAGAN’s local implementation of matching networks substantially outperforms the match-
ing network results presented in the original paper. Our CDAGAN experiment is based on this local implementation.

4.2. Image Classification

Our first experiment is to test how well the CDAGAN
can augment vanilla classifiers trained on each target do-
main. In the fist case, a DenseNet classifier was trained on
just real data (with standard data augmentation) with 5, 10
or 15 examples per class. In the second case, the classifier
was also passed generated augmented data. The real or fake
label was also passed to the network, to enable the network
to learn how best to emphasise true over generated data.
This last step proved crucial to maximizing the potential of
the augmentations. In each training cycle, varying numbers
of augmented samples were provided for each real example
(ranging from 1-10); the best annotation rate was selected
via performance on the validation domain. The results on
the held out test cases from the target domain are respec-
tively given in Table 1 for Omniglot, Table 2 for EMNIST
and Table 3 for VGG-Face. In every case the augmentation
improves the classification. It can be seen that our CDA-
GAN based augmentation can consistently performs better
than DAGAN based augmentation, verifying the effective-

ness of our generation method.

4.3. One-shot learning

We follow the standard one-shot learning approach in
DAGAN to execute our one-shot classification experiment.
Similarly, we learn an appropriate distance between repre-
sentations that can be used with a nearest neighbour clas-
sifier. We focus on the use of Matching Networks to learn
a representation space, where distances in that representa-
tion space produce good classifiers. The same networks can
then be used in a target domain for nearest neighbour clas-
sification. A matching network creates a predictor from a
support set in the target domain by using an attention mem-
ory network to generate an appropriate comparison space
for comparing a test example with each of the training ex-
amples.

By augmenting the support sets and then learning to
learn from that augmented data, we can enhance the classi-
fication power of matching networks, and apply that to the
augmented domain. Precisely, we train the CDAGAN on

7



the source domain, then train the matching networks on the
source domain, along with a sample-selector neural network
that selects the best representative z input used to create an
additional datum that augments each case. Augmentation
was used during every matching network training episode
to simulate the data augmentation process. We used match-
ing networks without full-context embedding version and
stacked K GAN generated (augmented) images along with
the original image. We ran experiments for 20 classes and
one sample per class per episode, i.e., the one shot learn-
ing setting. Table 4 shows the Omniglot one-shot results.
We can see that the CDAGAN was enhancing even simple
pixel distance with large improvement. Furthermore, in our
matching network experiments, we saw an improvement of
0.2% over the original DAGAN.

5. Conclusion
In this paper, we presented Cyclic Data Augmentation

Generative Adversarial Network, a more effective condi-
tional generative model which can generate realistic and di-
verse images given input conditional images. One of the
principal innovations is that we add a novel cyclic supervi-
sor, which can exploit correlation and coherence between
the original domain and the new domain. We conducted
various experiments on several datasets, which demonstrate
the effectiveness of our method.

References
[1] Finn C, Abbeel P, Levine S. Model-agnostic meta-

learning for fast adaptation of deep networks[J]. arXiv
preprint arXiv:1703.03400, 2017.

[2] Liang W, Liu Z, Liu C. DAWSON: A Domain Adap-
tive Few Shot Generation Framework[J]. arXiv preprint
arXiv:2001.00576, 2020.

[3] Antoniou A, Storkey A, Edwards H. Data augmenta-
tion generative adversarial networks[J]. arXiv preprint
arXiv:1711.04340, 2017.

[4] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Genera-
tive adversarial nets[C]//Advances in neural information
processing systems. 2014: 2672-2680.

[5] Lake B, Salakhutdinov R, Gross J, et al. One shot learn-
ing of simple visual concepts[C]//Proceedings of the
annual meeting of the cognitive science society. 2011,
33(33).

[6] Rezende D J, Mohamed S, Danihelka I, et al. One-
shot generalization in deep generative models[J]. arXiv
preprint arXiv:1603.05106, 2016.

[7] Bartunov S, Vetrov D. Few-shot generative modelling
with generative matching networks[C]//International

Conference on Artificial Intelligence and Statistics.
2018: 670-678.

[8] Hong Y, Niu L, Zhang J, et al. F2GAN: Fusing-
and-Filling GAN for Few-shot Image Genera-
tion[C]//Proceedings of the 28th ACM International
Conference on Multimedia. 2020: 2535-2543.

8


